"초기하급수의 합공식"의 두 판 사이의 차이
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로) |
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “<h5 (.*)">” 문자열을 “==” 문자열로) |
||
1번째 줄: | 1번째 줄: | ||
− | + | ==이 항목의 스프링노트 원문주소== | |
* [[초기하급수의 합공식|초기하 급수의 합공식]] | * [[초기하급수의 합공식|초기하 급수의 합공식]] | ||
5번째 줄: | 5번째 줄: | ||
− | + | ==개요== | |
15번째 줄: | 15번째 줄: | ||
− | + | ==Chu-Vandermonde 공식== | |
<math>\,_2F_1(-n,b;c;1)=\dfrac{(c-b)_{n}}{(c)_{n}}</math> | <math>\,_2F_1(-n,b;c;1)=\dfrac{(c-b)_{n}}{(c)_{n}}</math> | ||
25번째 줄: | 25번째 줄: | ||
− | + | ==가우스 공식== | |
<math>\,_2F_1(a,b;c;1)=\dfrac{\Gamma(c)\,\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)}</math> | <math>\,_2F_1(a,b;c;1)=\dfrac{\Gamma(c)\,\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)}</math> | ||
36번째 줄: | 36번째 줄: | ||
− | + | == 쿰머 공식== | |
<math>\,_2F_1(a,b;1+a-b;-1)=\dfrac{\Gamma(1+a-b)\,\Gamma(1+\frac{1}{2}a)}{\Gamma(1+a)\Gamma(1+\frac{1}{2}a-b)}</math> | <math>\,_2F_1(a,b;1+a-b;-1)=\dfrac{\Gamma(1+a-b)\,\Gamma(1+\frac{1}{2}a)}{\Gamma(1+a)\Gamma(1+\frac{1}{2}a-b)}</math> | ||
44번째 줄: | 44번째 줄: | ||
− | + | ==딕슨 공식== | |
<math>\;_3F_2 (a,b,c;1+a-b,1+a-c;1)= | <math>\;_3F_2 (a,b,c;1+a-b,1+a-c;1)= | ||
54번째 줄: | 54번째 줄: | ||
− | + | == Bailey 공식== | |
<math>\;_2F_1 \left(a,1-a;c;\frac{1}{2}\right)= | <math>\;_2F_1 \left(a,1-a;c;\frac{1}{2}\right)= | ||
65번째 줄: | 65번째 줄: | ||
− | + | ==Pfaff 공식== | |
<math>\,_3F_2(a,b,-n;c,1+a+b-c-n;1)=\dfrac{(c-a)_{n}(c-b)_{n}}{(c)_{n}(c-a-b)_{n}}</math> | <math>\,_3F_2(a,b,-n;c,1+a+b-c-n;1)=\dfrac{(c-a)_{n}(c-b)_{n}}{(c)_{n}(c-a-b)_{n}}</math> | ||
73번째 줄: | 73번째 줄: | ||
− | + | ==Dougall 공식== | |
[http://dx.doi.org/10.1016/0022-247X%2890%2990375-P http://dx.doi.org/10.1016/0022-247X(90)90375-P] | [http://dx.doi.org/10.1016/0022-247X%2890%2990375-P http://dx.doi.org/10.1016/0022-247X(90)90375-P] | ||
111번째 줄: | 111번째 줄: | ||
− | + | ==수학용어번역== | |
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q= | * 단어사전 http://www.google.com/dictionary?langpair=en|ko&q= |
2012년 11월 1일 (목) 13:28 판
이 항목의 스프링노트 원문주소
개요
Chu-Vandermonde 공식
\(\,_2F_1(-n,b;c;1)=\dfrac{(c-b)_{n}}{(c)_{n}}\)
아래 가우스 공식에서 \(a=-n\)인 경우에 얻어진다
가우스 공식
\(\,_2F_1(a,b;c;1)=\dfrac{\Gamma(c)\,\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)}\)
\(\;_2F_1 \left(a,b;\frac{1}{2}+\frac{a}{2}+\frac{b}{2};\frac{1}{2}\right) = \frac{\Gamma(\frac{1}{2})\Gamma(\frac{1}{2}+\frac{a}{2}+\frac{b}{2})}{\Gamma(\frac{1}{2}+\frac{a}{2})\Gamma(\frac{1}{2}+\frac{b}{2})}\)
쿰머 공식
\(\,_2F_1(a,b;1+a-b;-1)=\dfrac{\Gamma(1+a-b)\,\Gamma(1+\frac{1}{2}a)}{\Gamma(1+a)\Gamma(1+\frac{1}{2}a-b)}\)
딕슨 공식
\(\;_3F_2 (a,b,c;1+a-b,1+a-c;1)= \frac{\Gamma(1+a/2)\Gamma(1+a/2-b-c)\Gamma(1+a-b)\Gamma(1+a-c)} {\Gamma(1+a)\Gamma(1+a-b-c)\Gamma(1+a/2-b)\Gamma(1+a/2-c)}\)
Bailey 공식
\(\;_2F_1 \left(a,1-a;c;\frac{1}{2}\right)= \frac{\Gamma(\frac{c}{2})\Gamma(\frac{1}{2}+\frac{c}{2})}{\Gamma(\frac{c}{2}+\frac{a}{2})\Gamma(\frac{1}{2}+\frac{c}{2}-\frac{a}{2})}\)
Pfaff 공식
\(\,_3F_2(a,b,-n;c,1+a+b-c-n;1)=\dfrac{(c-a)_{n}(c-b)_{n}}{(c)_{n}(c-a-b)_{n}}\)
Dougall 공식
http://dx.doi.org/10.1016/0022-247X(90)90375-P
\({}_2H_2(a,b;c,d;1)= \sum_{-\infty}^\infty\frac{(a)_n(b)_n}{(c)_n(d)_n}= \frac{\Gamma(d)\Gamma(e)\Gamma(1-a)\Gamma(1-b)\Gamma(c+d-a-b-1)}{\Gamma(c-a)\Gamma(c-b)\Gamma(d-a)\Gamma(d-b)} \)
http://en.wikipedia.org/wiki/Bilateral_hypergeometric_series#Dougall.27s_bilateral_sum
역사
메모
관련된 항목들
수학용어번역
- 단어사전 http://www.google.com/dictionary?langpair=en%7Cko&q=
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Vandermonde's_identity
- http://en.wikipedia.org/wiki/
- http://mathworld.wolfram.com/HypergeometricSummation.html
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
관련도서
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)