"최대정수함수 (가우스함수)"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		개요==
에르미트 항등식==
이차잉여에의 응용==
		
	
Pythagoras0 (토론 | 기여)  잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)  | 
				|||
| 1번째 줄: | 1번째 줄: | ||
| − | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소  | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소==  | 
* [[최대정수함수 (가우스함수)]]<br>  | * [[최대정수함수 (가우스함수)]]<br>  | ||
| 7번째 줄: | 7번째 줄: | ||
| − | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요  | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요==  | 
*  실수 x 에 대하여 <math>\lfloor x\rfloor</math>는 <math>x</math> 이하의 최대정수를 의미한다<br>  | *  실수 x 에 대하여 <math>\lfloor x\rfloor</math>는 <math>x</math> 이하의 최대정수를 의미한다<br>  | ||
| 16번째 줄: | 16번째 줄: | ||
| − | <h5 style="line-height: 2em; margin: 0px;">에르미트 항등식  | + | <h5 style="line-height: 2em; margin: 0px;">에르미트 항등식==  | 
*  실수 x 와 자연수 n에 대하여, 다음이 성립한다<br> [x]+[x+1/n]+......[x+n-1/n] = [nx]<br><math>\sum_{k=0}^{n-1}\left\lfloor x+\frac{k}{n}\right\rfloor=\lfloor nx\rfloor</math><br>  | *  실수 x 와 자연수 n에 대하여, 다음이 성립한다<br> [x]+[x+1/n]+......[x+n-1/n] = [nx]<br><math>\sum_{k=0}^{n-1}\left\lfloor x+\frac{k}{n}\right\rfloor=\lfloor nx\rfloor</math><br>  | ||
| 26번째 줄: | 26번째 줄: | ||
| − | <h5 style="line-height: 2em; margin: 0px;">이차잉여에의 응용  | + | <h5 style="line-height: 2em; margin: 0px;">이차잉여에의 응용==  | 
*  서로 소인 두 양수인 홀수 p,q 에 대하여 다음이 성립한다<br><math>\sum_{i=1}^{(p-1)/2}[\frac{iq}{p}]+\sum_{j=1}^{(q-1)/2}[\frac{jp}{q}]=\frac{(p-1)(q-1)}{4}</math><br>  | *  서로 소인 두 양수인 홀수 p,q 에 대하여 다음이 성립한다<br><math>\sum_{i=1}^{(p-1)/2}[\frac{iq}{p}]+\sum_{j=1}^{(q-1)/2}[\frac{jp}{q}]=\frac{(p-1)(q-1)}{4}</math><br>  | ||
| 37번째 줄: | 37번째 줄: | ||
| − | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">역사  | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">역사==  | 
*   <br>  | *   <br>  | ||
| 48번째 줄: | 48번째 줄: | ||
| − | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">메모  | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">메모==  | 
| 54번째 줄: | 54번째 줄: | ||
| − | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 항목들  | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 항목들==  | 
* [[가우스의 보조정리(Gauss's lemma)]]<br>  | * [[가우스의 보조정리(Gauss's lemma)]]<br>  | ||
| 64번째 줄: | 64번째 줄: | ||
| − | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역  | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역==  | 
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=  | * 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=  | ||
| 77번째 줄: | 77번째 줄: | ||
| − | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">사전 형태의 자료  | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">사전 형태의 자료==  | 
* http://ko.wikipedia.org/wiki/  | * http://ko.wikipedia.org/wiki/  | ||
| 92번째 줄: | 92번째 줄: | ||
| − | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련논문  | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련논문==  | 
* http://www.jstor.org/action/doBasicSearch?Query=  | * http://www.jstor.org/action/doBasicSearch?Query=  | ||
| 102번째 줄: | 102번째 줄: | ||
| − | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서  | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서==  | 
*  도서내검색<br>  | *  도서내검색<br>  | ||
2012년 11월 1일 (목) 13:05 판
이 항목의 스프링노트 원문주소==
개요==
- 실수 x 에 대하여 \(\lfloor x\rfloor\)는 \(x\) 이하의 최대정수를 의미한다
 
- 예
\(\lfloor 0.8\rfloor=0\)
\(\lfloor -0.2\rfloor=-1\)
 
 
 
\(\lfloor 0.8\rfloor=0\)
\(\lfloor -0.2\rfloor=-1\)
에르미트 항등식==
- 실수 x 와 자연수 n에 대하여, 다음이 성립한다
 [x]+[x+1/n]+......[x+n-1/n] = [nx]
\(\sum_{k=0}^{n-1}\left\lfloor x+\frac{k}{n}\right\rfloor=\lfloor nx\rfloor\)
 
 
 
 
[x]+[x+1/n]+......[x+n-1/n] = [nx]
\(\sum_{k=0}^{n-1}\left\lfloor x+\frac{k}{n}\right\rfloor=\lfloor nx\rfloor\)
이차잉여에의 응용==
- 서로 소인 두 양수인 홀수 p,q 에 대하여 다음이 성립한다
\(\sum_{i=1}^{(p-1)/2}[\frac{iq}{p}]+\sum_{j=1}^{(q-1)/2}[\frac{jp}{q}]=\frac{(p-1)(q-1)}{4}\)
 
- 가우스의 보조정리(Gauss's lemma) 와 함께 사용하면, 이차잉여의 상호법칙 을 증명할 수 있다
 
- p=23, q=11 의 경우
[1]
\(\sum_{i=1}^{(p-1)/2}[\frac{iq}{p}]\) 은 검은색 점의 개수를 세고, \(\sum_{j=1}^{(q-1)/2}[\frac{jp}{q}]\) 은 빨간색 점의 개수를 센다
 
- http://en.wikipedia.org/wiki/Proofs_of_quadratic_reciprocity#Eisenstein.27s_proof
 
 
 
\(\sum_{i=1}^{(p-1)/2}[\frac{iq}{p}]+\sum_{j=1}^{(q-1)/2}[\frac{jp}{q}]=\frac{(p-1)(q-1)}{4}\)
[1]
\(\sum_{i=1}^{(p-1)/2}[\frac{iq}{p}]\) 은 검은색 점의 개수를 세고, \(\sum_{j=1}^{(q-1)/2}[\frac{jp}{q}]\) 은 빨간색 점의 개수를 센다