"코테베그-드 브리스 방정식(KdV equation)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
17번째 줄: 17번째 줄:
 
*  numerically (Zabusky & Kruskal 1965).<br>
 
*  numerically (Zabusky & Kruskal 1965).<br>
 
** interaction of two 1-soliton solutions
 
** interaction of two 1-soliton solutions
** they discovered that solitons of differenct sizes interact cleanly
+
** they discovered that solitons of different sizes interact cleanly
  
 
 
 
 
73번째 줄: 73번째 줄:
 
* http://www.springerlink.com/content/gr665351h46628j6/fulltext.html
 
* http://www.springerlink.com/content/gr665351h46628j6/fulltext.html
 
* [http://people.seas.harvard.edu/%7Ejones/solitons/pdf/025.pdf http://people.seas.harvard.edu/~jones/solitons/pdf/025.pdf]
 
* [http://people.seas.harvard.edu/%7Ejones/solitons/pdf/025.pdf http://people.seas.harvard.edu/~jones/solitons/pdf/025.pdf]
 +
* http%3A%2F%2Fkft.umcs.lublin.pl%2Fkmur%2Fdownload%2Fprezentacje%2Fsolitons_my.ppt
  
 
 
 
 
81번째 줄: 82번째 줄:
  
 
* [[파동 방정식|파동방정식]]
 
* [[파동 방정식|파동방정식]]
 +
* [[사인-고든 방정식]]
  
 
 
 
 

2012년 1월 14일 (토) 03:15 판

이 항목의 스프링노트 원문주소

 

 

개요
  • any localized nonlinear wave which interacts with another (arbitrary) local disturbance and always regains asymptotically its exact initial shape and velocity (allowing for a possible phase shift)
  • Solitons were discovered experimentally (Russell 1844)
  • analytically (Korteweg & de Vries, 1895)
    • modelling of Russell's discovery
    • 1-soliton solution
  • numerically (Zabusky & Kruskal 1965).
    • interaction of two 1-soliton solutions
    • they discovered that solitons of different sizes interact cleanly

 

 

러셀(John Scott Russell)의 관찰 
  • Using a wave tank, he demonstrated four facts
    • First, solitary waves have a hyperbolic secant shape.
    • Second, a sufficiently large initial mass of water produces two or more independent solitary waves.
    • Third, solitary waves cross each other “without change of any kind.”
    • Finally, a wave of height h and traveling in a channel of depth d has a velocity given by the expression (where g is the acceleration of gravity), implying that a large amplitude solitary wave travels faster than one of low amplitude.

 

 

 

코테베그-드 브리스 방정식 (KdV equation)
  • \(u_{xxx}=u_t+6uu_x\)
  • 1-soliton 해의 유도

\(u(x,t)=f(x-ct)\)로 두자.

\(f'''= 6ff'-cf'\)

\(f''=3f^2-cf+b\)

\(f''f'=(3f^2-cf+b)f'\)

\(\frac{1}{2}(f')^2=f^3-\frac{c}{2}f^2+bf+a\)

 

 

역사

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

리뷰