"타원곡선"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
117번째 줄: 117번째 줄:
 
** http://book.daum.net/search/contentSearch.do?query=
 
** http://book.daum.net/search/contentSearch.do?query=
 
*  도서검색<br>
 
*  도서검색<br>
**   <br>
 
 
** http://books.google.com/books?q=elliptic+curves
 
** http://books.google.com/books?q=elliptic+curves
 
** http://books.google.com/books?q=
 
** http://books.google.com/books?q=

2009년 10월 12일 (월) 17:36 판

간단한 소개

 

\(y^2=4x^3-g_2(\tau)x-g_3\)

\(g_2(\tau) = 60G_4=60\sum_{ (m,n) \neq (0,0)} \frac{1}{(m+n\tau )^{4}}\)

\(g_3(\tau) = 140G_6=140\sum_{ (m,n) \neq (0,0)} \frac{1}{(m+n\tau )^{6}}\)

 

 

군의 구조
  • chord-tangent method

 

 

\(y^2=x^3-x\)

[/pages/2061314/attachments/2299029 MSP1975197gdf732cih44i50000361d01gd578fhc4a.gif]

\(y^2=4x^3-4x\)

\(2\omega=4\int_0^1\frac{dx}{\sqrt{1-x^4}}=B(1/2,1/4)=\frac{\Gamma(\frac{1}{2})\Gamma(\frac{1}{4})}{\Gamma(\frac{3}{4})}=5.24\cdots\)

 

congruent number  문제

 

 

 

재미있는 사실

 

 

역사

 

 

관련된 다른 주제들
수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서 및 추천도서

 

 

관련기사

 

 

블로그