"타원곡선"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
136번째 줄: 136번째 줄:
 
* [http://arxiv.org/abs/math/0311306 Conics - a Poor Man's Elliptic Curves]<br>
 
* [http://arxiv.org/abs/math/0311306 Conics - a Poor Man's Elliptic Curves]<br>
 
** Franz Lemmermeyer, arXiv:math/0311306v1
 
** Franz Lemmermeyer, arXiv:math/0311306v1
 +
* [http://www.jstor.org/stable/2687483 Three Fermat Trails to Elliptic Curves]<br>
 +
** Ezra Brown, <cite style="line-height: 2em;">The College Mathematics Journal</cite>, Vol. 31, No. 3 (May, 2000), pp. 162-172
 
* [http://www.jstor.org/stable/2974515 Elliptic Curves]<br>
 
* [http://www.jstor.org/stable/2974515 Elliptic Curves]<br>
 
** John Stillwell, <cite style="line-height: 2em;">The American Mathematical Monthly</cite>, Vol. 102, No. 9 (Nov., 1995), pp. 831-837
 
** John Stillwell, <cite style="line-height: 2em;">The American Mathematical Monthly</cite>, Vol. 102, No. 9 (Nov., 1995), pp. 831-837
* [http://www.jstor.org/stable/2687483 Three Fermat Trails to Elliptic Curves]<br>
+
* [http://www.jstor.org/stable/2324954 Taxicabs and Sums of Two Cubes]<br>
** Ezra Brown, <cite>The College Mathematics Journal</cite>, Vol. 31, No. 3 (May, 2000), pp. 162-172
+
** Joseph H. SilvermanThe American Mathematical Monthly, Vol. 100, No. 4 (Apr., 1993), pp. 331-340
 
* [http://www.jstor.org/stable/2007967 On the Conjecture of Birch and Swinnerton-Dyer for an Elliptic Curve of Rank 3]<br>
 
* [http://www.jstor.org/stable/2007967 On the Conjecture of Birch and Swinnerton-Dyer for an Elliptic Curve of Rank 3]<br>
 
** Joe P. Buhler, Benedict H. Gross and Don B. Zagier, Mathematics of Computation, Vol. 44, No. 170 (Apr., 1985), pp. 473-481
 
** Joe P. Buhler, Benedict H. Gross and Don B. Zagier, Mathematics of Computation, Vol. 44, No. 170 (Apr., 1985), pp. 473-481
 
* [http://www.springerlink.com/content/r733tt28wr632k66/ Rational isogenies of prime degree]<br>
 
* [http://www.springerlink.com/content/r733tt28wr632k66/ Rational isogenies of prime degree]<br>
 
** Barry Mazur, Inventiones Math. 44 (1978), 129-162
 
** Barry Mazur, Inventiones Math. 44 (1978), 129-162
 
 
* http://www.jstor.org/action/doBasicSearch?Query=elliptic+curves
 
* http://www.jstor.org/action/doBasicSearch?Query=elliptic+curves
 
* http://www.jstor.org/action/doBasicSearch?Query=congruent+number+problem
 
* http://www.jstor.org/action/doBasicSearch?Query=congruent+number+problem
* http://www.jstor.org/action/doBasicSearch?Query=taxicabs
 
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.jstor.org/action/doBasicSearch?Query=
  

2009년 10월 20일 (화) 11:30 판

간단한 소개

 

 

 

격자와 타원곡선

\(y^2=4x^3-g_2(\tau)x-g_3\)

\(g_2(\tau) = 60G_4=60\sum_{ (m,n) \neq (0,0)} \frac{1}{(m+n\tau )^{4}}\)

\(g_3(\tau) = 140G_6=140\sum_{ (m,n) \neq (0,0)} \frac{1}{(m+n\tau )^{6}}\)

 

 

군의 구조
  • chord-tangent method
  • 유리수해에 대한 Mordell theorem
    • 유리수체 위에 정의된 타원의 유리수해는 유한생성아벨군의 구조를 가짐
    • \(\mathbb{Z}^r \oplus \mathbb{T}\)
       

 

덧셈공식
  • \(y^2=x^3+ax^2+bx+c\)위의 점 \(P=(x,y)\)에 대하여,
    \(2P\)의 \(x\)좌표는\(\frac{x^4-2bx^2-8cx-4ac+b^2}{4y^2}\) 로 주어진다

 

 

 

rank와 torsion
  • the only possible torsion groups for elliptic curves over Q are the cyclic groups of order 1,2,3,4,5,6,7,8,9,10,12 [sic -- 11 is not possible] and
    \(\frac{\mathbb Z}{2\mathbb Z}\oplus \frac{\mathbb Z}{n\mathbb Z}\) for n=1,2,3,4
  • 예) \(E_n : y^2=x^3-n^2x\)의 torsion은 \(\{(\infty,\infty), (0,0),(n,0),(-n,0)\}\)임

 

 

  • \(y^2=x^3-x\)
    [/pages/2061314/attachments/2299029 MSP1975197gdf732cih44i50000361d01gd578fhc4a.gif]
  • 유리수해
    \(E(\mathbb Q)=\{(\infty,\infty), (0,0),(1,0),(-1,0)\} \simeq \frac{\mathbb Z}{2\mathbb Z}\oplus \frac{\mathbb Z}{2\mathbb Z}\)
  • 주기
    \(2\omega=4\int_0^1\frac{dx}{\sqrt{1-x^4}}=B(1/2,1/4)=\frac{\Gamma(\frac{1}{2})\Gamma(\frac{1}{4})}{\Gamma(\frac{3}{4})}=5.24\cdots\)

 

 

 

L-함수

 

타니야마-시무라 추측(정리)

 

 

Birch and Swinnerton-Dyer conjecture

 

재미있는 사실

 

 

역사

 

 

관련된 다른 주제들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서 및 추천도서

 

 

관련기사

 

 

블로그