"파동 방정식"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
9번째 줄: 9번째 줄:
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5>
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5>
  
 <br> 편미분방정식<br><math>{ \partial^2 u \over \partial t^2 } = v^2 \nabla^2 u</math><br>
+
*  편미분방정식<br><math>{ \partial^2 u \over \partial t^2 } = v^2 \nabla^2 u</math><br>
  
 
 
 
 
21번째 줄: 21번째 줄:
 
* 위상
 
* 위상
 
* dispersion relation
 
* dispersion relation
 
 
 
  
 
 
 
 
63번째 줄: 61번째 줄:
  
 
 
 
 
 +
 +
 
 +
 +
<h5 style="margin: 0px; line-height: 2em;">평면파</h5>
 +
 +
*   <br>
  
 
 
 
 

2010년 5월 11일 (화) 18:14 판

이 항목의 스프링노트 원문주소

 

 

개요
  • 편미분방정식
    \({ \partial^2 u \over \partial t^2 } = v^2 \nabla^2 u\)

 

 

주요용어
  • 각속도
  • 파동수
  • 위상
  • dispersion relation

 

 

일반해
  • \(Y=f(x+at)+g(x-at)\). Let \(a\) be a constant.

 \(\frac{\partial^2 Y}{\partial t^2}=a^2\frac{\partial^2 Y}{\partial x^2}\).

 

Let \(u=x+at\), \(v=x-at\).

Then \(Y=f(u)+g(v)\).

\(\frac{\partial Y}{\partial t}=\frac{\partial Y}{\partial u}\frac{\partial u}{\partial t} +\frac{\partial Y}{\partial v}\frac{\partial v}{\partial t}=f'(u)a+g'(v)(-a)=af'(u)-ag'(v)\)

Let \(W(u,v)=\frac{\partial Y}{\partial t}=af'(u)-ag'(v)\).

\(\frac{\partial^2 Y}{\partial t^2}=\frac{\partial W}{\partial t}=\frac{\partial W}{\partial u}\frac{\partial u}{\partial t} +\frac{\partial W}{\partial v}\frac{\partial v}{\partial t}=af''(u)a-ag''(v)(-a)=a^2(f''(u)+g''(v))\)

 

Now turn to the right hand side.

\(\frac{\partial Y}{\partial x}=\frac{\partial Y}{\partial u}\frac{\partial u}{\partial x} +\frac{\partial Y}{\partial v}\frac{\partial v}{\partial x}=f'(u)+g'(v)\)

Let \(Z(u,v)=\frac{\partial Y}{\partial x}=f'(u)+g'(v)\)

\(\frac{\partial^2 Y}{\partial x^2}=\frac{\partial Z}{\partial x}=\frac{\partial Z}{\partial u}\frac{\partial u}{\partial x} +\frac{\partial Z}{\partial v}\frac{\partial v}{\partial x}=f''(u)+g''(v)\)

 

따라서

\(\frac{\partial^2 Y}{\partial t^2}=a^2\frac{\partial^2 Y}{\partial x^2}=a^2(f''(u)+g''(v))\)■

 

 

평면파
  •  

 

 

맥스웰방정식

 

  • 맥스웰방정식 으로부터 전기장이 파동방정식을 만족시킴을 알 수 있다
    \( \nabla^2 \mathbf{E}= \mu_0 \varepsilon_0 \frac{\partial^2 \mathbf{E}} {\partial t^2}\)

 

 

 

재미있는 사실

 

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서

 

 

관련기사

 

 

블로그