"페론-프로베니우스 정리 (Perron-Frobenius theorem)"의 두 판 사이의 차이
59번째 줄: | 59번째 줄: | ||
따라서 K는 compact, convex, non-empty. | 따라서 K는 compact, convex, non-empty. | ||
− | + | <math>f : K\to \mathbb{R}^{n}</math> 을 <math>f(\mathbf{x})=\frac{A\mathbf{x}}{\|A\mathbf{x}\|_1}</math> 로 정의하자. | |
− | <math>f(\mathbf{x})=\frac{A\mathbf{x}}{\|A\mathbf{x}\|_1}</math> | + | <math>f(\mathbf{x})\geq 0</math>, <math>\|f(\mathbf{x})\|_{1}=1</math> 임을 쉽게 알 수 있다. 또한, |
+ | |||
+ | <math>Af(\mathbf{x})=\frac{A (A\mathbf{x})}{\|A\mathbf{x}\|_1}\geq \frac{A (\rho(A)\mathbf{x})}{\|A\mathbf{x}\|_1}=\rho(A)f(\mathbf{x})</math> 이므로, <math>f(K)\subset K</math> | ||
2012년 5월 31일 (목) 05:13 판
이 항목의 수학노트 원문주소
개요
- A = (aij) 가 n × n 양행렬, 즉 1 ≤ i, j ≤ n 에 대하여 aij > 0 가 성립한다고 가정하자
- 다음이 성립한다
- A의 고유값 \(r>0\) 이 존재하여, 다른 고유값 λ에 대하여 부등식 |λ| < r가 성립한다.
- r 에 대응되는 고유벡터공간은 1차원이다
- r에 대응되는 모든 성분이 양수인 고유벡터 v = (v1,…,vn) 가 존재한다. 즉 A v = r v, 1 ≤ i ≤ n 에 대하여 vi > 0 이 성립하도록 하는 v를 찾을수 있다
- A의 고유값 \(r>0\) 이 존재하여, 다른 고유값 λ에 대하여 부등식 |λ| < r가 성립한다.
예
카르탄 행렬 \(\mathcal{C}(A_5)\) 의 역행렬은
\(\left( \begin{array}{ccccc} \frac{5}{6} & \frac{2}{3} & \frac{1}{2} & \frac{1}{3} & \frac{1}{6} \\ \frac{2}{3} & \frac{4}{3} & 1 & \frac{2}{3} & \frac{1}{3} \\ \frac{1}{2} & 1 & \frac{3}{2} & 1 & \frac{1}{2} \\ \frac{1}{3} & \frac{2}{3} & 1 & \frac{4}{3} & \frac{2}{3} \\ \frac{1}{6} & \frac{1}{3} & \frac{1}{2} & \frac{2}{3} & \frac{5}{6} \end{array} \right)\)로 양행렬이다.
이 행렬의 고유값은 \(2+\sqrt{3},1,\frac{1}{2},\frac{1}{3},2-\sqrt{3}\)로 주어진다.
벡터 \(\left( \begin{array}{c} 1 \\ \sqrt{3} \\ 2 \\ \sqrt{3} \\ 1 \end{array} \right)\) 는 고유값이 \(2+\sqrt{3}\)인 고유벡터이다.
브라우어 부동점 정리의 응용
\(A\geq 0\) : non-negative 행렬
\(\sigma(A)\) : A 의 spectrum, 즉 A의 고유값의 집합 \(\sigma(A)=\{\lambda_1,\cdots, \lambda_{k}\}\)
\(\rho(A)\) : A 의 spectral radius, \(\{|\lambda_1|,\cdots, |\lambda_{k}|\}\) 에서의 최대값
\(\|\mathbf{x}\|_{1}\) : L^1-norm of x, 즉 \(\mathbf{x}=(x_1,\cdots, x_k)\) 이면, \(\|\mathbf{x}\|_{1}=|x_1|+\cdots+|x_k|\)
(정리)
\(\rho(A)\) 는 A의 고유값이며, \(\mathbf{x}\geq 0\) 인 고유벡터가 존재한다.
(증명)
\(K =\{\mathbf{x}\in\mathbb{R}^n|\mathbf{x}\geq 0,\|\mathbf{x}\|_{1}=1, A\mathbf{x}\geq \rho(A)\mathbf{x}\}\) 라 두자.
\(\lambda\) 를 \(|\lambda|=\rho(A)\) 를 만족시키는 A의 고유값이라 하고, \(\mathbf{v}\) 를 대응되는 고유벡터라 두자. \(\|\mathbf{v}\|_{1}=1\) 로 둘 수 있다.
\(\rho(A)|\mathbf{v}|=|\lambda \mathbf{v}|=|A \mathbf{v}|\leq A|\mathbf{v}|\) 이므로, \(|\mathbf{v}|\in K\) 이고, K는 공집합이 아니다.
따라서 K는 compact, convex, non-empty.
\(f : K\to \mathbb{R}^{n}\) 을 \(f(\mathbf{x})=\frac{A\mathbf{x}}{\|A\mathbf{x}\|_1}\) 로 정의하자.
\(f(\mathbf{x})\geq 0\), \(\|f(\mathbf{x})\|_{1}=1\) 임을 쉽게 알 수 있다. 또한,
\(Af(\mathbf{x})=\frac{A (A\mathbf{x})}{\|A\mathbf{x}\|_1}\geq \frac{A (\rho(A)\mathbf{x})}{\|A\mathbf{x}\|_1}=\rho(A)f(\mathbf{x})\) 이므로, \(f(K)\subset K\)
역사
메모
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
수학용어번역
- 단어사전
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 한국통계학회 통계학 용어 온라인 대조표
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
매스매티카 파일 및 계산 리소스
- https://docs.google.com/file/d/0B8XXo8Tve1cxTGpWWGN0dGhudUU/edit?pli=1
- http://www.wolframalpha.com/input/?i=
- http://functions.wolfram.com/
- NIST Digital Library of Mathematical Functions
- Abramowitz and Stegun Handbook of mathematical functions
- The On-Line Encyclopedia of Integer Sequences
- Numbers, constants and computation
- 매스매티카 파일 목록
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Perron–Frobenius_theorem
- http://en.wikipedia.org/wiki/Nonnegative_matrix
- The Online Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
리뷰논문, 에세이, 강의노트
- [1]http://www.imsc.res.in/~sunder/pf.pdf
- 페론-프로베니우스 in graph theory, fusion algebra, ...
관련논문
관련도서
- Henryk Minc, Nonnegative matrices, John Wiley&Sons, New York, 1988, ISBN 0-471-83966-3
- 도서내검색