"폴리로그 함수(polylogarithm)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
51번째 줄: 51번째 줄:
 
* http://books.google.com/books?hl=ko&lr=&id=9G3nlZUDAhkC&oi=fnd&pg=PA391&dq=The+classical+polylogarithms,+algebraic+K-theory&ots=zst2m387di&sig=kNRuqZp_mUdFDXScW41qNbprgps#v=onepage&q=&f=false
 
* http://books.google.com/books?hl=ko&lr=&id=9G3nlZUDAhkC&oi=fnd&pg=PA391&dq=The+classical+polylogarithms,+algebraic+K-theory&ots=zst2m387di&sig=kNRuqZp_mUdFDXScW41qNbprgps#v=onepage&q=&f=false
 
* [http://www.maths.dur.ac.uk/%7Edma0hg/kyoto.pdf Functional equations of polylogarithms] Herbert Gangl<br>
 
* [http://www.maths.dur.ac.uk/%7Edma0hg/kyoto.pdf Functional equations of polylogarithms] Herbert Gangl<br>
*
+
 
** '[http://www.maths.dur.ac.uk/%7Edma0hg/kyoto.pdf http://www.maths.dur.ac.uk/~dma0hg/kyoto.pdf]
+
* '[http://www.maths.dur.ac.uk/%7Edma0hg/kyoto.pdf http://www.maths.dur.ac.uk/~dma0hg/kyoto.pdf]
** [http://www.mathematik.hu-berlin.de/%7Ekreimer/Polylogarithms.pdf http://www.mathematik.hu-berlin.de/~kreimer/Polylogarithms.pdf]
+
* [http://www.mathematik.hu-berlin.de/%7Ekreimer/Polylogarithms.pdf http://www.mathematik.hu-berlin.de/~kreimer/Polylogarithms.pdf]
  
 
 
 
 

2011년 9월 17일 (토) 01:55 판

이 항목의 스프링노트 원문주소

 

 

개요

 

 

정의

\(\operatorname{Li}_r(z)= \sum_{n=1}^\infty {z^n \over n^r}=\int_0^z \operatorname{Li}_{r-1}(z) \frac{dt}{t}\)

\(\operatorname{Li}_3(z) =\int_0^z \operatorname{Li}_2(z) \frac{dt}{t}\)

 

 

재미있는 사실

 

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문