"폴리로그 함수(polylogarithm)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
51번째 줄: 51번째 줄:
 
* http://books.google.com/books?hl=ko&lr=&id=9G3nlZUDAhkC&oi=fnd&pg=PA391&dq=The+classical+polylogarithms,+algebraic+K-theory&ots=zst2m387di&sig=kNRuqZp_mUdFDXScW41qNbprgps#v=onepage&q=&f=false
 
* http://books.google.com/books?hl=ko&lr=&id=9G3nlZUDAhkC&oi=fnd&pg=PA391&dq=The+classical+polylogarithms,+algebraic+K-theory&ots=zst2m387di&sig=kNRuqZp_mUdFDXScW41qNbprgps#v=onepage&q=&f=false
 
* [http://www.maths.dur.ac.uk/%7Edma0hg/kyoto.pdf Functional equations of polylogarithms] Herbert Gangl<br>
 
* [http://www.maths.dur.ac.uk/%7Edma0hg/kyoto.pdf Functional equations of polylogarithms] Herbert Gangl<br>
 
+
* '[http://www.maths.dur.ac.uk/%7Edma0hg/kyoto.pdf ][http://www.maths.dur.ac.uk/%7Edma0hg/kyoto.pdf http://www.maths.dur.ac.uk/~dma0hg/kyoto.pdf]
* '[http://www.maths.dur.ac.uk/%7Edma0hg/kyoto.pdf http://www.maths.dur.ac.uk/~dma0hg/kyoto.pdf]
 
* [http://www.mathematik.hu-berlin.de/%7Ekreimer/Polylogarithms.pdf http://www.mathematik.hu-berlin.de/~kreimer/Polylogarithms.pdf]
 
  
 
 
 
 
61번째 줄: 59번째 줄:
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 항목들</h5>
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 항목들</h5>
  
 +
* [[L-함수의 값 구하기 입문]]<br>
 
* [[원주율의 BBP 공식|파이에 대한 BBP 공식]]<br>
 
* [[원주율의 BBP 공식|파이에 대한 BBP 공식]]<br>
 
* [[로그 사인 적분 (log sine integrals)]]<br>
 
* [[로그 사인 적분 (log sine integrals)]]<br>
90번째 줄: 89번째 줄:
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
 
** http://www.research.att.com/~njas/sequences/?q=
 
** http://www.research.att.com/~njas/sequences/?q=
 +
 +
 
 +
 +
 
 +
 +
<h5>리뷰논문, 에세이, 강의노트</h5>
 +
 +
* John R. Rhodes [http://www.mathematik.hu-berlin.de/%7Ekreimer/Polylogarithms.pdf Polylogarithms] ,2008
 +
* [http://arxiv.org/abs/alg-geom/9202022 Classical Polylogarithms] Hain, Richard, 1992<br>
 +
 +
 
  
 
 
 
 
97번째 줄: 107번째 줄:
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련논문</h5>
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련논문</h5>
  
 +
*   <br>
 
* [http://arxiv.org/abs/math/0310062 Multiple Polylogarithms: A Brief Survey] Douglas Bowman, David M. Bradley, 5 Oct 2003<br>
 
* [http://arxiv.org/abs/math/0310062 Multiple Polylogarithms: A Brief Survey] Douglas Bowman, David M. Bradley, 5 Oct 2003<br>
 
* [http://arxiv.org/abs/math.CA/9803067 Polylogarithmic ladders, hypergeometric series and the ten millionth digits of $\zeta(3)$ and $\zeta(5)$] D. J. Broadhurst, 1998<br>
 
* [http://arxiv.org/abs/math.CA/9803067 Polylogarithmic ladders, hypergeometric series and the ten millionth digits of $\zeta(3)$ and $\zeta(5)$] D. J. Broadhurst, 1998<br>
 
* [http://dx.doi.org/http://dx.doi.org/10.1090%2FS0025-5718-97-00856-9 On the rapid computation of various polylogarithmic constants] David Bailey; Peter Borwein; Simon Plouffe.Journal: Math. Comp. 66 (1997), 903-913.<br>
 
* [http://dx.doi.org/http://dx.doi.org/10.1090%2FS0025-5718-97-00856-9 On the rapid computation of various polylogarithmic constants] David Bailey; Peter Borwein; Simon Plouffe.Journal: Math. Comp. 66 (1997), 903-913.<br>
* [http://arxiv.org/abs/alg-geom/9202022 Classical Polylogarithms] Hain, Richard, 1992<br>
 
 
*  Ramakrishnan, Analogs of the Bloch-Wigner function for higher polylogarithms, 1986<br>
 
*  Ramakrishnan, Analogs of the Bloch-Wigner function for higher polylogarithms, 1986<br>
 
*  The classical polylogarithms, algebraic K-theory and ζ. F. (n), Goncharov, A. Proc. of the Gelfand Seminar, Birkhauser, 113-135<br>
 
*  The classical polylogarithms, algebraic K-theory and ζ. F. (n), Goncharov, A. Proc. of the Gelfand Seminar, Birkhauser, 113-135<br>

2011년 9월 19일 (월) 15:34 판

이 항목의 스프링노트 원문주소

 

 

개요

 

 

정의

\(\operatorname{Li}_r(z)= \sum_{n=1}^\infty {z^n \over n^r}=\int_0^z \operatorname{Li}_{r-1}(z) \frac{dt}{t}\)

\(\operatorname{Li}_3(z) =\int_0^z \operatorname{Li}_2(z) \frac{dt}{t}\)

 

 

재미있는 사실

 

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

리뷰논문, 에세이, 강의노트

 

 

 

관련논문