"폴리로그 함수(polylogarithm)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
20번째 줄: 20번째 줄:
 
<h5 style="line-height: 2em; margin: 0px;">정의</h5>
 
<h5 style="line-height: 2em; margin: 0px;">정의</h5>
  
*   <br>
+
<math>\operatorname{Li}_r(z)= \sum_{n=1}^\infty {z^n \over n^r}=\int_0^z \operatorname{Li}_{r-1}(t) \frac{dt}{t}</math>
  
<math>\operatorname{Li}_r(z)= \sum_{n=1}^\infty {z^n \over n^r}=\int_0^z \operatorname{Li}_{r-1}(z) \frac{dt}{t}</math>
+
<math>\operatorname{Li}_3(z) =\int_0^z \operatorname{Li}_2(t) \frac{dt}{t}</math>
  
<math>\operatorname{Li}_3(z) =\int_0^z \operatorname{Li}_2(z) \frac{dt}{t}</math>
+
 
  
 
 
 
 
  
 
+
<h5 style="line-height: 2em; margin: 0px;">로그함수</h5>
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">재미있는 사실</h5>
+
* [[로그 함수]]<br>
  
* http://mathoverflow.net/questions/25428/what-is-special-about-polylogarithms-that-leads-to-so-many-interesting-identities<br>
+
 
* Math Overflow http://mathoverflow.net/search?q=
 
* 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
 
  
 
 
 
 
53번째 줄: 51번째 줄:
  
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">메모</h5>
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">메모</h5>
 +
 +
* http://mathoverflow.net/questions/25428/what-is-special-about-polylogarithms-that-leads-to-so-many-interesting-identities<br>
  
 
* http://books.google.com/books?hl=ko&lr=&id=9G3nlZUDAhkC&oi=fnd&pg=PA391&dq=The+classical+polylogarithms,+algebraic+K-theory&ots=zst2m387di&sig=kNRuqZp_mUdFDXScW41qNbprgps#v=onepage&q=&f=false
 
* http://books.google.com/books?hl=ko&lr=&id=9G3nlZUDAhkC&oi=fnd&pg=PA391&dq=The+classical+polylogarithms,+algebraic+K-theory&ots=zst2m387di&sig=kNRuqZp_mUdFDXScW41qNbprgps#v=onepage&q=&f=false
 
* [http://www.maths.dur.ac.uk/%7Edma0hg/kyoto.pdf Functional equations of polylogarithms] Herbert Gangl<br>
 
* [http://www.maths.dur.ac.uk/%7Edma0hg/kyoto.pdf Functional equations of polylogarithms] Herbert Gangl<br>
* '[http://www.maths.dur.ac.uk/%7Edma0hg/kyoto.pdf ][http://www.maths.dur.ac.uk/%7Edma0hg/kyoto.pdf http://www.maths.dur.ac.uk/~dma0hg/kyoto.pdf]
+
* '[http://www.maths.dur.ac.uk/%7Edma0hg/kyoto.pdf http://www.maths.dur.ac.uk/~dma0hg/kyoto.pdf]
 +
*  Math Overflow<br>
 +
** http://mathoverflow.net/search?q=
  
 
 
 
 

2012년 5월 28일 (월) 08:32 판

이 항목의 스프링노트 원문주소

 

 

개요

 

 

 

정의

\(\operatorname{Li}_r(z)= \sum_{n=1}^\infty {z^n \over n^r}=\int_0^z \operatorname{Li}_{r-1}(t) \frac{dt}{t}\)

\(\operatorname{Li}_3(z) =\int_0^z \operatorname{Li}_2(t) \frac{dt}{t}\)

 

 

로그함수

 

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

리뷰논문, 에세이, 강의노트

 

 

 

관련논문