"하이젠베르크 군과 대수"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
|||
1번째 줄: | 1번째 줄: | ||
− | + | ==개요== | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
* [[양자 조화진동자]]<br><math>[X,P] = X P - P X = i \hbar</math><br> | * [[양자 조화진동자]]<br><math>[X,P] = X P - P X = i \hbar</math><br> | ||
− | + | ||
− | + | ||
− | + | ==유한차원 하이젠베르크 대수== | |
* 가환 리대수의 1차원 중심 확대(central extension)<br> | * 가환 리대수의 1차원 중심 확대(central extension)<br> | ||
21번째 줄: | 15번째 줄: | ||
* <math>[q_j, z] = 0</math><br> | * <math>[q_j, z] = 0</math><br> | ||
− | + | ||
+ | ==3차원에서의 예== | ||
+ | * 위삼각행렬(upper triangular matrix) <math>\left( | ||
+ | \begin{array}{ccc} | ||
+ | 0 & p & c \\ | ||
+ | 0 & 0 & q \\ | ||
+ | 0 & 0 & 0 | ||
+ | \end{array} | ||
+ | \right)</math>를 3차원 하이젠베르크 대수의 원소<math>pP+qX+cC</math>로 이해할 수 있다 | ||
+ | * 다음과 같은 교환 관계식을 만족한다<br><math>[\left( | ||
+ | \begin{array}{ccc} | ||
+ | 0 & p & c \\ | ||
+ | 0 & 0 & q \\ | ||
+ | 0 & 0 & 0 | ||
+ | \end{array} | ||
+ | \right), \left( | ||
+ | \begin{array}{ccc} | ||
+ | 0 & p' & c' \\ | ||
+ | 0 & 0 & q' \\ | ||
+ | 0 & 0 & 0 | ||
+ | \end{array} | ||
+ | \right)]=\left( | ||
+ | \begin{array}{ccc} | ||
+ | 0 & 0 & p q'-q p' \\ | ||
+ | 0 & 0 & 0 \\ | ||
+ | 0 & 0 & 0 | ||
+ | \end{array} | ||
+ | \right)</math> | ||
+ | |||
− | + | ||
− | + | ||
− | + | ==역사== | |
− | + | ||
− | |||
− | |||
* http://www.google.com/search?hl=en&tbs=tl:1&q= | * http://www.google.com/search?hl=en&tbs=tl:1&q= | ||
* [[수학사연표 (역사)|수학사연표]] | * [[수학사연표 (역사)|수학사연표]] | ||
− | + | ||
− | + | ||
− | + | ==메모== | |
− | |||
− | |||
+ | * spin vs metaplectic | ||
* Math Overflow http://mathoverflow.net/search?q= | * Math Overflow http://mathoverflow.net/search?q= | ||
− | + | ||
− | + | ||
− | + | ==관련된 항목들== | |
+ | * [[클리포드 대수와 스피너]] | ||
+ | |||
− | + | ||
− | + | ==수학용어번역== | |
− | |||
− | |||
* 단어사전<br> | * 단어사전<br> | ||
** http://translate.google.com/#en|ko| | ** http://translate.google.com/#en|ko| | ||
** http://ko.wiktionary.org/wiki/ | ** http://ko.wiktionary.org/wiki/ | ||
− | * | + | * 발음사전 http://www.forvo.com/search/ |
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br> | * [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br> | ||
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=central | ** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=central | ||
68번째 줄: | 87번째 줄: | ||
* [http://cgi.postech.ac.kr/cgi-bin/cgiwrap/sand/terms/terms.cgi 한국물리학회 물리학 용어집 검색기] | * [http://cgi.postech.ac.kr/cgi-bin/cgiwrap/sand/terms/terms.cgi 한국물리학회 물리학 용어집 검색기] | ||
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교] | * [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교] | ||
− | * [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 | + | * [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판] |
− | + | ||
− | + | ||
− | + | ==매스매티카 파일 및 계산 리소스== | |
− | * | + | * |
* http://www.wolframalpha.com/input/?i= | * http://www.wolframalpha.com/input/?i= | ||
* http://functions.wolfram.com/ | * http://functions.wolfram.com/ | ||
85번째 줄: | 104번째 줄: | ||
* [https://docs.google.com/open?id=0B8XXo8Tve1cxMWI0NzNjYWUtNmIwZi00YzhkLTkzNzQtMDMwYmVmYmIxNmIw 매스매티카 파일 목록] | * [https://docs.google.com/open?id=0B8XXo8Tve1cxMWI0NzNjYWUtNmIwZi00YzhkLTkzNzQtMDMwYmVmYmIxNmIw 매스매티카 파일 목록] | ||
− | + | ||
− | + | ||
− | + | ==사전 형태의 자료== | |
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
97번째 줄: | 116번째 줄: | ||
* [http://eqworld.ipmnet.ru/ The World of Mathematical Equations] | * [http://eqworld.ipmnet.ru/ The World of Mathematical Equations] | ||
− | + | ||
− | |||
− | |||
− | + | ||
− | + | ==리뷰논문, 에세이, 강의노트== | |
+ | * [http://www.math.columbia.edu/%7Ewoit/notes20.pdf The Heisenberg Algebra] | ||
+ | * [http://www.math.columbia.edu/%7Ewoit/notes21.pdf The Metaplectic Representation] | ||
− | + | ||
− | + | ||
− | + | ==관련논문== | |
* http://www.jstor.org/action/doBasicSearch?Query= | * http://www.jstor.org/action/doBasicSearch?Query= | ||
115번째 줄: | 134번째 줄: | ||
* http://dx.doi.org/ | * http://dx.doi.org/ | ||
− | + | ||
− | + | ||
− | + | ==관련도서== | |
* 도서내검색<br> | * 도서내검색<br> | ||
** http://books.google.com/books?q= | ** http://books.google.com/books?q= | ||
** http://book.daum.net/search/contentSearch.do?query= | ** http://book.daum.net/search/contentSearch.do?query= |
2012년 9월 4일 (화) 01:08 판
개요
- 양자 조화진동자
\([X,P] = X P - P X = i \hbar\)
유한차원 하이젠베르크 대수
- 가환 리대수의 1차원 중심 확대(central extension)
- \([p_i, q_j] = \delta_{ij}z\)
- \([p_i, z] = 0\)
- \([q_j, z] = 0\)
3차원에서의 예
- 위삼각행렬(upper triangular matrix) \(\left( \begin{array}{ccc} 0 & p & c \\ 0 & 0 & q \\ 0 & 0 & 0 \end{array} \right)\)를 3차원 하이젠베르크 대수의 원소\(pP+qX+cC\)로 이해할 수 있다
- 다음과 같은 교환 관계식을 만족한다
\([\left( \begin{array}{ccc} 0 & p & c \\ 0 & 0 & q \\ 0 & 0 & 0 \end{array} \right), \left( \begin{array}{ccc} 0 & p' & c' \\ 0 & 0 & q' \\ 0 & 0 & 0 \end{array} \right)]=\left( \begin{array}{ccc} 0 & 0 & p q'-q p' \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right)\)
역사
메모
- spin vs metaplectic
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
수학용어번역
- 단어사전
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=central
- central extension 중심 확대
- 한국통계학회 통계학 용어 온라인 대조표
- 한국물리학회 물리학 용어집 검색기
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
매스매티카 파일 및 계산 리소스
- http://www.wolframalpha.com/input/?i=
- http://functions.wolfram.com/
- NIST Digital Library of Mathematical Functions
- Abramowitz and Stegun Handbook of mathematical functions
- The On-Line Encyclopedia of Integer Sequences
- Numbers, constants and computation
- 매스매티카 파일 목록
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
리뷰논문, 에세이, 강의노트
관련논문