"하이젠베르크 군과 대수"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) |
||
121번째 줄: | 121번째 줄: | ||
==리뷰논문, 에세이, 강의노트== | ==리뷰논문, 에세이, 강의노트== | ||
− | * [http://www.math.columbia.edu/%7Ewoit/notes20.pdf The Heisenberg Algebra] | + | * Peter Woit의 강의 노트 |
− | * [http://www.math.columbia.edu/%7Ewoit/notes21.pdf The Metaplectic Representation] | + | ** [http://www.math.columbia.edu/%7Ewoit/notes20.pdf The Heisenberg Algebra] |
− | + | ** [http://www.math.columbia.edu/%7Ewoit/notes21.pdf The Metaplectic Representation] | |
− | |||
− | |||
− | |||
==관련논문== | ==관련논문== |
2012년 9월 4일 (화) 01:09 판
개요
- 양자 조화진동자
\([X,P] = X P - P X = i \hbar\)
유한차원 하이젠베르크 대수
- 가환 리대수의 1차원 중심 확대(central extension)
- \([p_i, q_j] = \delta_{ij}z\)
- \([p_i, z] = 0\)
- \([q_j, z] = 0\)
3차원에서의 예
- 위삼각행렬(upper triangular matrix) \(\left( \begin{array}{ccc} 0 & p & c \\ 0 & 0 & q \\ 0 & 0 & 0 \end{array} \right)\)를 3차원 하이젠베르크 대수의 원소\(pP+qX+cC\)로 이해할 수 있다
- 다음과 같은 교환 관계식을 만족한다
\([\left( \begin{array}{ccc} 0 & p & c \\ 0 & 0 & q \\ 0 & 0 & 0 \end{array} \right), \left( \begin{array}{ccc} 0 & p' & c' \\ 0 & 0 & q' \\ 0 & 0 & 0 \end{array} \right)]=\left( \begin{array}{ccc} 0 & 0 & p q'-q p' \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right)\)
역사
메모
- spin vs metaplectic
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
수학용어번역
- 단어사전
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=central
- central extension 중심 확대
- 한국통계학회 통계학 용어 온라인 대조표
- 한국물리학회 물리학 용어집 검색기
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
매스매티카 파일 및 계산 리소스
- http://www.wolframalpha.com/input/?i=
- http://functions.wolfram.com/
- NIST Digital Library of Mathematical Functions
- Abramowitz and Stegun Handbook of mathematical functions
- The On-Line Encyclopedia of Integer Sequences
- Numbers, constants and computation
- 매스매티카 파일 목록
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
리뷰논문, 에세이, 강의노트
- Peter Woit의 강의 노트
관련논문