"행렬 역학"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
9번째 줄: | 9번째 줄: | ||
− | 보어 | + | 보어-좀머펠트 양자 조건 |
correspondence principle | correspondence principle | ||
+ | |||
+ | |||
+ | |||
+ | * http://www.eolss.net/Sample-Chapters/C05/E6-06B-09-00.pdf | ||
33번째 줄: | 37번째 줄: | ||
<math>\nu_{mn}=-\nu_{nm}</math> | <math>\nu_{mn}=-\nu_{nm}</math> | ||
− | <math> | + | <math>m \neq n</math> 이면, <math>\nu_{mn}\neq 0</math> |
− | + | <math>\nu_{rs}+\nu_{st}=\nu_{rt}</math> | |
41번째 줄: | 45번째 줄: | ||
<h5>2</h5> | <h5>2</h5> | ||
+ | * Born-Jordan condition | ||
* <math>[Q,P] = Q P - P Q = i \hbar</math> | * <math>[Q,P] = Q P - P Q = i \hbar</math> | ||
49번째 줄: | 54번째 줄: | ||
<h5 style="margin: 0px; line-height: 2em;">3</h5> | <h5 style="margin: 0px; line-height: 2em;">3</h5> | ||
− | * <math>\dot{Q}_i=\partial H/\partial P</math><br> | + | * d<br><math>\dot{Q}_i=\partial H/\partial P</math><br> |
* <math>\dot{P}=-\partial H/\partial Q</math><br> | * <math>\dot{P}=-\partial H/\partial Q</math><br> | ||
81번째 줄: | 86번째 줄: | ||
On the other hand, matrix mechanics was invented by Heisenberg in June 1925, and presented in a fully developed form in Dirac’s first paper on quantum mechanics (received 7 November 1925) and also in the famous “three-men’s paper” of Born, Heisenberg and Jordan (received 16 November 1925). | On the other hand, matrix mechanics was invented by Heisenberg in June 1925, and presented in a fully developed form in Dirac’s first paper on quantum mechanics (received 7 November 1925) and also in the famous “three-men’s paper” of Born, Heisenberg and Jordan (received 16 November 1925). | ||
− | * | + | * http://www.worldscibooks.com/etextbook/7271/7271_chap02.pdf |
* [http://dialnet.unirioja.es/servlet/fichero_articulo?codigo=2735593 A brief history of the mathematical equivalence between the two quantum mechanics] | * [http://dialnet.unirioja.es/servlet/fichero_articulo?codigo=2735593 A brief history of the mathematical equivalence between the two quantum mechanics] | ||
* [http://philsci-archive.pitt.edu/3658/ Why were two theories (Matrix Mechanics and Wave Mechanics) deemed logically distinct, and yet equivalent, in Quantum Mechanics?] | * [http://philsci-archive.pitt.edu/3658/ Why were two theories (Matrix Mechanics and Wave Mechanics) deemed logically distinct, and yet equivalent, in Quantum Mechanics?] |
2012년 6월 7일 (목) 02:31 판
이 항목의 수학노트 원문주소
개요
보어-좀머펠트 양자 조건
correspondence principle
1
\(Q=\left(q_{mn}e^{2\pi it\nu_{mn}}\right)\)
\(P=\left(p_{mn}e^{2\pi it\nu_{mn}}\right)\)
\(q_{mn},p_{mn}\) : amplitudes
\(\nu_{mn}\) : frequency
\(q_{mn}=q_{nm}^{*}\)
\(p_{mn}=q_{nm}^{*}\)
\(\nu_{mn}=-\nu_{nm}\)
\(m \neq n\) 이면, \(\nu_{mn}\neq 0\)
\(\nu_{rs}+\nu_{st}=\nu_{rt}\)
2
- Born-Jordan condition
- \([Q,P] = Q P - P Q = i \hbar\)
3
- d
\(\dot{Q}_i=\partial H/\partial P\) - \(\dot{P}=-\partial H/\partial Q\)
4
역사
- 1925 Heisenberg matrix mechanics
- 1926 Pauli hydrogen atom
- 1927 Heisenberg uncertainty principle
- 1930-31 Stone-von Neuman Theorem
- http://www.google.com/search?hl=en&tbs=tl:1&q=
- 수학사연표
메모
On the other hand, matrix mechanics was invented by Heisenberg in June 1925, and presented in a fully developed form in Dirac’s first paper on quantum mechanics (received 7 November 1925) and also in the famous “three-men’s paper” of Born, Heisenberg and Jordan (received 16 November 1925).
- http://www.worldscibooks.com/etextbook/7271/7271_chap02.pdf
- A brief history of the mathematical equivalence between the two quantum mechanics
- Why were two theories (Matrix Mechanics and Wave Mechanics) deemed logically distinct, and yet equivalent, in Quantum Mechanics?
- Quantum Mechanics: Concepts and Applications
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
수학용어번역
- 단어사전
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 한국통계학회 통계학 용어 온라인 대조표
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
매스매티카 파일 및 계산 리소스
- http://www.wolframalpha.com/input/?i=
- http://functions.wolfram.com/
- NIST Digital Library of Mathematical Functions
- Abramowitz and Stegun Handbook of mathematical functions
- The On-Line Encyclopedia of Integer Sequences
- Numbers, constants and computation
- 매스매티카 파일 목록
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- The Online Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
리뷰논문, 에세이, 강의노트
- B. L. van der Waerden, From Matrix Mechanics and Wave Mechanics to Unified Quantum Mechanics
- 임경순, 행렬역학의 전개 과정
관련논문