"분할수가 만족시키는 합동식"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “<br><math>” 문자열을 “:<math>” 문자열로)  | 
				Pythagoras0 (토론 | 기여)   | 
				||
| 34번째 줄: | 34번째 줄: | ||
* http://www.google.com/search?hl=en&tbs=tl:1&q=  | * http://www.google.com/search?hl=en&tbs=tl:1&q=  | ||
| − | * [[  | + | * [[수학사 연표]]  | 
*    | *    | ||
2013년 1월 14일 (월) 15:43 판
이 항목의 스프링노트 원문주소
개요
- 라마누잔의 발견\[p(5k+4)\equiv 0 \pmod 5\]\[p(7k+5)\equiv 0 \pmod 7\]\[p(11k+6)\equiv 0 \pmod {11}\]
 
항등식
\(\sum_{k=0}^\infty p(5k+4)q^k=5\frac{(q^5;q^5)_\infty^5}{(q;q)_\infty^6}\)
\(\sum_{k=0}^\infty p(7k+5)q^k=7\frac{(q^7;q^7)_\infty^3}{(q;q)_\infty^4}+49q\frac{(q^7;q^7)_\infty^7}{(q;q)_\infty^8}\)
역사
메모
관련된 항목들
수학용어번역