"블로흐-비그너 다이로그(Bloch-Wigner dilogarithm)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “<br><math>” 문자열을 “:<math>” 문자열로)
잔글 (찾아 바꾸기 – “수학사연표” 문자열을 “수학사 연표” 문자열로)
50번째 줄: 50번째 줄:
 
==역사==
 
==역사==
  
* [[수학사연표 (역사)|수학사연표]]
+
* [[수학사 연표]]
  
 
   
 
   

2013년 1월 14일 (월) 13:30 판

개요

$$\operatorname{Li}_ 2(z) = -\int_0^z{{\ln (1-t)}\over t} dt$$

이 때, $z\in \mathbb C-[1,\infty)$

  • 다이로그 함수의 변종으로 블로흐-비그너 다이로그(Bloch-Wigner dilogarithm)를 \(z\in\mathbb{C}\)에 대하여 다음과 같이 정의함

\[D(z)=\text{Im}(\operatorname{Li}_ 2(z))+\log|z|\arg(1-z)\] ,

  • 복소평면에서 정의된 실수값을 갖는 연속함수
  • 복소평면의 0과 1을 제외한 모든 점에서 real analytic
  • 대수적 K-이론에서 수체의 K_ 3 군을 실벡터 공간으로 보내는 regulator map을 구성하는데 활용됨
  • 다이로그 함수의 허수부에 대해서는 로바체프스키와 클라우센 함수 항목 참조



그래프와 등고선

  • 복소평면에서 정의된 실수값을 갖는 연속함수

블로흐-비그너 다이로그(Bloch-Wigner dilogarithm)1.gif

  • 다음과 같은 등고선을 얻는다

블로흐-비그너 다이로그(Bloch-Wigner dilogarithm)2.gif


항등식

  • 여러 함수 항등식을 만족함

\[D(z)=D(1-\frac{1}{z})=D(\frac{1}{1-z})=-D(\frac{1}{z})=-D(1-z)=-D(\frac{z}{z-1})\]

$$D(\bar{z})=-D(z)$$
  • Dilogarithm 함수가 만족시키는 공식을 깔끔하게 함\[\mbox{Li}_ 2(x)\],\(\mbox{Li}_ 2 \left(\frac{1}{1-x}\right)\), \(\mbox{Li}_ 2 \left(1- \frac{1}{x} \right)\), \(-\mbox{Li}_ 2 \left( \frac{1}{x} \right)\),\(-\mbox{Li}_ 2 \left(1-x \right)\) , \(-\mbox{Li}_ 2 \left( \frac{x}{x-1} \right)\)

five-term relation

  • 가장 중요한 항등식

\[D(x)+D(y)+D\left( \frac{1-x}{1-xy} \right)+D(1-xy)+D\left( \frac{1-y}{1-xy} \right)=0\]

\[\mbox{Li}_ 2(x)+\mbox{Li}_ 2(y)+\mbox{Li}_ 2 \left( \frac{1-x}{1-xy} \right)+\mbox{Li}_ 2(1-xy)+\mbox{Li}_ 2 \left( \frac{1-y}{1-xy} \right)=\frac{\pi^2}{2}-\log(x)\log(1-x)-\log(y)\log(1-y)+\log (\frac{1-x}{1-xy})\log (\frac{1-y}{1-xy})\]


클라우센 함수와의 관계

\[\operatorname{Cl}_ 2(\theta)=-\int_0^{\theta} \ln |2\sin \frac{t}{2}| \,dt=\sum_{n=1}^{\infty}\frac{\sin (n\theta)}{n^2}\]


데데킨트 제타함수와의 관계

\[\zeta_{K}(2)=\frac{\pi^2}{6\sqrt{|d_K|}}\sum_{(a,d_k)=1} (\frac{d_K}{a})D(e^{2\pi ia/|d_k|})\] \[\zeta_{\mathbb{Q}\sqrt{-7}}(2)=\frac{\pi^2}{3\sqrt{7}}(D(e^{2\pi i/7})+D(e^{4\pi i/7})-D(e^{6\pi i/7}))\]


역사



메모

관련된 항목들



매스매티카 파일 및 계산 리소스






관련논문

  • The Bloch-Wigner-Ramakrishnan polylogarithm function, Don Zagier, Math-Annalen, pages 612\[Dash]624, 1990. http://dx.doi.org/10.1007/BF01453591
  • Polylogarithms, Dedekind Zeta functions, and the algebraic K-theory of fields



관련도서