"버치와 스위너톤-다이어 추측"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “수학사연표” 문자열을 “수학사 연표” 문자열로)
1번째 줄: 1번째 줄:
 
==개요==
 
==개요==
 
 
* 타원곡선의 rank는 잘 알려져 있지 않다
 
* 타원곡선의 rank는 잘 알려져 있지 않다
 
* Birch and Swinnerton-Dyer 추측은 타원곡선의 rank에 대한 밀레니엄 추측의 하나이다
 
* Birch and Swinnerton-Dyer 추측은 타원곡선의 rank에 대한 밀레니엄 추측의 하나이다
19번째 줄: 18번째 줄:
  
 
* Hasse-Weil 제타함수라고도 함
 
* Hasse-Weil 제타함수라고도 함
*  타원 곡선 E의 conductor가 N일 때, 다음과 같이 정의됨:<math>L(s,E)=\prod_p L_p (s,E)^{-1}</math><br> 여기서 :<math>L_p(s,E)=\left\{\begin{array}{ll}(1-a_pp^{-s}+p^{1-2s}), & \mbox{if }p \nmid N \\ (1-a_pp^{-s}), & \mbox{if }p||N \\            1, & \mbox{if }p^2|N \end{array}\right.</math><br>
+
*  타원 곡선 E의 conductor가 N일 때, 다음과 같이 정의됨:<math>L(s,E)=\prod_p L_p (s,E)^{-1}</math> 여기서 :<math>L_p(s,E)=\left\{\begin{array}{ll}(1-a_pp^{-s}+p^{1-2s}), & \mbox{if }p \nmid N \\ (1-a_pp^{-s}), & \mbox{if }p||N \\            1, & \mbox{if }p^2|N \end{array}\right.</math>
 
* 여기서 <math>a_p</math>는 유한체위에서의 해의 개수와 관련된 정수
 
* 여기서 <math>a_p</math>는 유한체위에서의 해의 개수와 관련된 정수
  
28번째 줄: 27번째 줄:
 
==추측==
 
==추측==
  
* <math>E(\mathbb{Q})=\mathbb{Z}^r \oplus E(\mathbb{Q})_{\operatorname{Tor}}</math>의 rank r은 <math>\operatorname{Ord}_{s=1}L(s,E)</math>와 같다<br>
+
* <math>E(\mathbb{Q})=\mathbb{Z}^r \oplus E(\mathbb{Q})_{\operatorname{Tor}}</math>의 rank r은 <math>\operatorname{Ord}_{s=1}L(s,E)</math>와 같다
  
 
   
 
   
44번째 줄: 43번째 줄:
 
==역사==
 
==역사==
  
* The Birch and Swinnerton-Dyer conjecture has been proved only in special cases :<br>
+
* The Birch and Swinnerton-Dyer conjecture has been proved only in special cases :
  
 
# In 1976 [http://en.wikipedia.org/wiki/John_Coates_%28mathematician%29 John Coates] and [http://en.wikipedia.org/wiki/Andrew_Wiles Andrew Wiles] proved that if <em>E</em> is a curve over a number field <em>F</em> with complex multiplication by an imaginary quadratic field <em>K</em> of [http://en.wikipedia.org/wiki/Class_number_ %28 number_theory %29 class number] 1, <em>F=K</em> or '''Q''', and <em>L(E,1)</em> is not 0 then <em>E</em> has only a finite number of rational points. This was extended to the case where <em>F</em> is any finite abelian extension of <em>K</em> by Nicole Arthaud-Kuhman, who shared an office with Wiles when both were students of Coates at Stanford.
 
# In 1976 [http://en.wikipedia.org/wiki/John_Coates_%28mathematician%29 John Coates] and [http://en.wikipedia.org/wiki/Andrew_Wiles Andrew Wiles] proved that if <em>E</em> is a curve over a number field <em>F</em> with complex multiplication by an imaginary quadratic field <em>K</em> of [http://en.wikipedia.org/wiki/Class_number_ %28 number_theory %29 class number] 1, <em>F=K</em> or '''Q''', and <em>L(E,1)</em> is not 0 then <em>E</em> has only a finite number of rational points. This was extended to the case where <em>F</em> is any finite abelian extension of <em>K</em> by Nicole Arthaud-Kuhman, who shared an office with Wiles when both were students of Coates at Stanford.
51번째 줄: 50번째 줄:
 
# In 1991 [http://en.wikipedia.org/wiki/Karl_Rubin Karl Rubin] showed that for elliptic curves defined over an imaginary quadratic field <em>K</em> with complex multiplication by <em>K</em>, if the <em>L</em>-series of the elliptic curve was not zero at <em>s=1</em>, then the <em>p</em>-part of the Tate-Shafarevich group had the order predicted by the Birch and Swinnerton-Dyer conjecture, for all primes <em>p > 7</em>.
 
# In 1991 [http://en.wikipedia.org/wiki/Karl_Rubin Karl Rubin] showed that for elliptic curves defined over an imaginary quadratic field <em>K</em> with complex multiplication by <em>K</em>, if the <em>L</em>-series of the elliptic curve was not zero at <em>s=1</em>, then the <em>p</em>-part of the Tate-Shafarevich group had the order predicted by the Birch and Swinnerton-Dyer conjecture, for all primes <em>p > 7</em>.
 
# In 1999 [http://en.wikipedia.org/wiki/Andrew_Wiles Andrew Wiles], [http://en.wikipedia.org/wiki/Christophe_Breuil Christophe Breuil], [http://en.wikipedia.org/wiki/Brian_Conrad Brian Conrad], [http://en.wikipedia.org/wiki/Fred_Diamond Fred Diamond] and [http://en.wikipedia.org/wiki/Richard_Taylor_ %28 mathematician %29 Richard Taylor] proved that all elliptic curves defined over the rational numbers are modular (the [http://en.wikipedia.org/wiki/Taniyama-Shimura_theorem Taniyama-Shimura theorem]), which extends results 2 and 3 to all elliptic curves over the rationals.
 
# In 1999 [http://en.wikipedia.org/wiki/Andrew_Wiles Andrew Wiles], [http://en.wikipedia.org/wiki/Christophe_Breuil Christophe Breuil], [http://en.wikipedia.org/wiki/Brian_Conrad Brian Conrad], [http://en.wikipedia.org/wiki/Fred_Diamond Fred Diamond] and [http://en.wikipedia.org/wiki/Richard_Taylor_ %28 mathematician %29 Richard Taylor] proved that all elliptic curves defined over the rational numbers are modular (the [http://en.wikipedia.org/wiki/Taniyama-Shimura_theorem Taniyama-Shimura theorem]), which extends results 2 and 3 to all elliptic curves over the rationals.
 
+
*  Nothing has been proved for curves with rank greater than 1, although there is extensive numerical evidence for the truth of the conjecture.
*  Nothing has been proved for curves with rank greater than 1, although there is extensive numerical evidence for the truth of the conjecture.<br>
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
 
* [[수학사 연표]]
 
* [[수학사 연표]]
+
 
 
 
 
 
 
 
   
 
   
 
==메모==
 
 
 
 
 
 
 
==관련된 항목들==
 
==관련된 항목들==
  
76번째 줄: 63번째 줄:
  
 
==수학용어번역==
 
==수학용어번역==
 
+
* {{forvo|url=Birch}}
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=
+
* {{forvo|url=Swinnerton-Dyer}}
* 발음사전 http://www.forvo.com/search/
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=\%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%\EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
 
 
 
  
 
   
 
   
91번째 줄: 72번째 줄:
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/Birch_and_Swinnerton-Dyer_conjecture
 
* http://en.wikipedia.org/wiki/Birch_and_Swinnerton-Dyer_conjecture
* http://en.wikipedia.org/wiki/
 
* http://www.wolframalpha.com/input/?i=
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
 
** http://www.research.att.com/~njas/sequences/?q=
 
  
 
  
 
   
 
   
  
==expository==
+
==리뷰, 에세이, 강의노트==
  
 
* Wiles, A. "[http://www.claymath.org/millennium/Birch_and_Swinnerton-Dyer_Conjecture/BSD.pdf The Birch and Swinnerton-Dyer Conjecture]
 
* Wiles, A. "[http://www.claymath.org/millennium/Birch_and_Swinnerton-Dyer_Conjecture/BSD.pdf The Birch and Swinnerton-Dyer Conjecture]
  
 
  
 
   
 
   
111번째 줄: 85번째 줄:
 
==관련논문==
 
==관련논문==
  
* [http://www.mathnet.ru/eng/im1191 Finiteness of E(Q) and Sha(E, Q) for a subclass of Weil curves]<br>
+
* [http://www.mathnet.ru/eng/im1191 Finiteness of E(Q) and Sha(E, Q) for a subclass of Weil curves]
 
** V. Kolyvagin, (transl.) Math. USSR-Izv. 32 (1989), no. 3, 523--541
 
** V. Kolyvagin, (transl.) Math. USSR-Izv. 32 (1989), no. 3, 523--541
 
+
* [http://dx.doi.org/10.1007%2FBF01458081 Heegner points and derivatives of L-series. II]
* [http://dx.doi.org/10.1007%2FBF01458081 Heegner points and derivatives of L-series. II]<br>
+
**  Gross, B.; Kohnen, W.; Zagier, D. (1987),  Mathematische Annalen 278 (1\[Dash]4): 497-562
**  Gross, B.; Kohnen, W.; Zagier, D. (1987),  Mathematische Annalen 278 (1\[Dash]4): 497\[Dash]562<br>
+
* [http://dx.doi.org/10.1007%2FBF01388809 Heegner points and derivatives of L-series]
* [http://dx.doi.org/10.1007%2FBF01388809 Heegner points and derivatives of L-series]<br>
+
**  Gross, Benedict H.; Zagier, Don B. (1986),  Inventiones Mathematicae 84 (2): 225-320
**  Gross, Benedict H.; Zagier, Don B. (1986),  Inventiones Mathematicae 84 (2): 225\[Dash]320<br>
+
* [http://www.jstor.org/stable/2007967 On the Conjecture of Birch and Swinnerton-Dyer for an Elliptic Curve of Rank 3]
 
 
* [http://www.jstor.org/stable/2007967 On the Conjecture of Birch and Swinnerton-Dyer for an Elliptic Curve of Rank 3]<br>
 
 
** Joe P. Buhler, Benedict H. Gross and Don B. Zagier, Mathematics of Computation, Vol. 44, No. 170 (Apr., 1985), pp. 473-481
 
** Joe P. Buhler, Benedict H. Gross and Don B. Zagier, Mathematics of Computation, Vol. 44, No. 170 (Apr., 1985), pp. 473-481
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.ams.org/mathscinet
 
* http://dx.doi.org/
 

2014년 1월 3일 (금) 15:44 판

개요

  • 타원곡선의 rank는 잘 알려져 있지 않다
  • Birch and Swinnerton-Dyer 추측은 타원곡선의 rank에 대한 밀레니엄 추측의 하나이다



유리수해

  • \(E(\mathbb{Q})=\mathbb{Z}^r \oplus E(\mathbb{Q})_{\operatorname{Tor}}\)



타원곡선의 L-함수

  • Hasse-Weil 제타함수라고도 함
  • 타원 곡선 E의 conductor가 N일 때, 다음과 같이 정의됨\[L(s,E)=\prod_p L_p (s,E)^{-1}\] 여기서 \[L_p(s,E)=\left\{\begin{array}{ll}(1-a_pp^{-s}+p^{1-2s}), & \mbox{if }p \nmid N \\ (1-a_pp^{-s}), & \mbox{if }p||N \\ 1, & \mbox{if }p^2|N \end{array}\right.\]
  • 여기서 \(a_p\)는 유한체위에서의 해의 개수와 관련된 정수



추측

  • \(E(\mathbb{Q})=\mathbb{Z}^r \oplus E(\mathbb{Q})_{\operatorname{Tor}}\)의 rank r은 \(\operatorname{Ord}_{s=1}L(s,E)\)와 같다



Coates-Wiles theorem




역사

  • The Birch and Swinnerton-Dyer conjecture has been proved only in special cases :
  1. In 1976 John Coates and Andrew Wiles proved that if E is a curve over a number field F with complex multiplication by an imaginary quadratic field K of %28 number_theory %29 class number 1, F=K or Q, and L(E,1) is not 0 then E has only a finite number of rational points. This was extended to the case where F is any finite abelian extension of K by Nicole Arthaud-Kuhman, who shared an office with Wiles when both were students of Coates at Stanford.
  2. In 1983 Benedict Gross and Don Zagier showed that if a modular elliptic curve has a first-order zero at s = 1 then it has a rational point of infinite order; see E2 %80 %93 Zagier_theorem Gross\[DashZagier theorem].
  3. In 1990 Victor Kolyvagin showed that a modular elliptic curve E for which L(E,1) is not zero has rank 0, and a modular elliptic curve E for which L(E,1) has a first-order zero at s = 1 has rank 1.
  4. In 1991 Karl Rubin showed that for elliptic curves defined over an imaginary quadratic field K with complex multiplication by K, if the L-series of the elliptic curve was not zero at s=1, then the p-part of the Tate-Shafarevich group had the order predicted by the Birch and Swinnerton-Dyer conjecture, for all primes p > 7.
  5. In 1999 Andrew Wiles, Christophe Breuil, Brian Conrad, Fred Diamond and %28 mathematician %29 Richard Taylor proved that all elliptic curves defined over the rational numbers are modular (the Taniyama-Shimura theorem), which extends results 2 and 3 to all elliptic curves over the rationals.
  • Nothing has been proved for curves with rank greater than 1, although there is extensive numerical evidence for the truth of the conjecture.
  • 수학사 연표


관련된 항목들



수학용어번역


사전 형태의 자료



리뷰, 에세이, 강의노트



관련논문