"도지슨 응축"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) |
||
1번째 줄: | 1번째 줄: | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==개요== | ==개요== | ||
27번째 줄: | 21번째 줄: | ||
==메모== | ==메모== | ||
− | * | + | * The Desnanot-Jacobi identity |
+ | * 1986 Robbins-Rumsey lambda determinant | ||
* Dodgson’s condensation method for computing determinants has led to the notion of alternating sign matrices and to their remarkable combinatorics. These topics have connections with the 6-vertex model in physics and statistical mechanics and with much recent work on graphical condensation, group characters, and a whole lot more. | * Dodgson’s condensation method for computing determinants has led to the notion of alternating sign matrices and to their remarkable combinatorics. These topics have connections with the 6-vertex model in physics and statistical mechanics and with much recent work on graphical condensation, group characters, and a whole lot more. | ||
* [http://www.math.upenn.edu/%7Epemantle/Summer2009/Library/Dodgson%20and%20Alternating%20Signs.pdf http://www.math.upenn.edu/~pemantle/Summer2009/Library/Dodgson%20and%20Alternating%20Signs.pdf] | * [http://www.math.upenn.edu/%7Epemantle/Summer2009/Library/Dodgson%20and%20Alternating%20Signs.pdf http://www.math.upenn.edu/~pemantle/Summer2009/Library/Dodgson%20and%20Alternating%20Signs.pdf] | ||
− | |||
37번째 줄: | 31번째 줄: | ||
==관련된 항목들== | ==관련된 항목들== | ||
− | + | * [[행렬식]] | |
45번째 줄: | 39번째 줄: | ||
* https://docs.google.com/leaf?id=0B8XXo8Tve1cxYzMyMTI2ZGEtNmZlNi00ZWMyLWFkODctMWQzZjc0OGU3NjVm&sort=name&layout=list&num=50 | * https://docs.google.com/leaf?id=0B8XXo8Tve1cxYzMyMTI2ZGEtNmZlNi00ZWMyLWFkODctMWQzZjc0OGU3NjVm&sort=name&layout=list&num=50 | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
81번째 줄: | 50번째 줄: | ||
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
* http://en.wikipedia.org/wiki/Dodgson_condensation | * http://en.wikipedia.org/wiki/Dodgson_condensation | ||
− | |||
− | |||
− | |||
− | |||
==리뷰논문, 에세이, 강의노트== | ==리뷰논문, 에세이, 강의노트== | ||
− | + | * Abeles, Francine F. 2008. “Dodgson Condensation: The Historical and Mathematical Development of an Experimental Method.” Linear Algebra and Its Applications 429 (2-3): 429–438. doi:10.1016/j.laa.2007.11.022. | |
* [http://www.maa.org/mathtourist/mathtourist_03_19_07.html Lewis Carroll and His Telescoping Determinants] | * [http://www.maa.org/mathtourist/mathtourist_03_19_07.html Lewis Carroll and His Telescoping Determinants] | ||
+ | ==관련논문== | ||
+ | * Berliner, Adam, and Richard A. Brualdi. 2008. “A Combinatorial Proof of the Dodgson/Muir Determinantal Identity.” International Journal of Information & Systems Sciences 4 (1): 1–7. | ||
+ | * Zeilberger, Doron. 1997. “Dodgson’s Determinant-Evaluation Rule Proved by Two-Timing Men and Women.” Electronic Journal of Combinatorics 4 (2): Research Paper 22, approx. 2 pp. (electronic). | ||
− | |||
− | |||
− | |||
− | |||
− | |||
[[분류:선형대수학]] | [[분류:선형대수학]] |
2013년 11월 22일 (금) 06:41 판
개요
- 행렬식을 계산하는 방법의 하나
- nxn 행렬의 행렬식을 2x2 행렬의 행렬식을 반복적으로 계산하여 얻음
역사
메모
- The Desnanot-Jacobi identity
- 1986 Robbins-Rumsey lambda determinant
- Dodgson’s condensation method for computing determinants has led to the notion of alternating sign matrices and to their remarkable combinatorics. These topics have connections with the 6-vertex model in physics and statistical mechanics and with much recent work on graphical condensation, group characters, and a whole lot more.
- http://www.math.upenn.edu/~pemantle/Summer2009/Library/Dodgson%20and%20Alternating%20Signs.pdf
관련된 항목들
매스매티카 파일 및 계산 리소스
사전 형태의 자료
리뷰논문, 에세이, 강의노트
- Abeles, Francine F. 2008. “Dodgson Condensation: The Historical and Mathematical Development of an Experimental Method.” Linear Algebra and Its Applications 429 (2-3): 429–438. doi:10.1016/j.laa.2007.11.022.
- Lewis Carroll and His Telescoping Determinants
관련논문
- Berliner, Adam, and Richard A. Brualdi. 2008. “A Combinatorial Proof of the Dodgson/Muir Determinantal Identity.” International Journal of Information & Systems Sciences 4 (1): 1–7.
- Zeilberger, Doron. 1997. “Dodgson’s Determinant-Evaluation Rule Proved by Two-Timing Men and Women.” Electronic Journal of Combinatorics 4 (2): Research Paper 22, approx. 2 pp. (electronic).