"순환 행렬(circulant matrix)과 행렬식"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
20번째 줄: 20번째 줄:
  
 
==행렬식==
 
==행렬식==
 +
;정리
 +
$C_n$의 행렬식은 다음으로 주어진다
 +
:<math>\det(C_n)=\prod _{j=0}^{n-1} \sum _{k=0}^{n-1} \omega_{j} ^{ k} a_k</math> 여기서 <math>\omega_j=\exp \left(\frac{2\pi i j}{n}\right)</math>
  
* $C_n$의 행렬식은 다음으로 주어진다 :<math>\det(C_n)=\prod _{j=0}^{n-1} \sum _{k=0}^{n-1} \omega_{j} ^{ k} a_k</math> 여기서 <math>\omega_j=\exp \left(\frac{2\pi i j}{n}\right)</math>
+
===예===
* 예:<math>\begin{array}{l} a_0 \\ \left(a_0+a_1\right) \left(a_0+\omega  a_1\right)=a_0^2-a_1^2 \\  \left(a_0+a_1+a_2\right) \left(a_0+\omega ^2 a_1+\omega  a_2\right) \left(a_0+\omega  a_1+\omega ^2 a_2\right)=a_0^3+a_1^3+a_2^3 -3 a_1 a_2 a_0\\ \left(a_0+a_1+a_2+a_3\right) \left(a_0+\omega ^3 a_1+\omega ^2 a_2+\omega  a_3\right) \left(a_0+\omega ^2 a_1+a_2+\omega ^2 a_3\right) \left(a_0+\omega  a_1+\omega ^2 a_2+\omega ^3 a_3\right) \end{array}</math><br>
+
:<math>
 +
\begin{array}{l}  
 +
\begin{aligned}
 +
\det(C_1)&=a_0 \\  
 +
\det(C_2)&=\left(a_0+a_1\right) \left(a_0+\omega  a_1\right) \\
 +
&=a_0^2-a_1^2 \\   
 +
\det(C_3)&=\left(a_0+a_1+a_2\right) \left(a_0+\omega ^2 a_1+\omega  a_2\right) \left(a_0+\omega  a_1+\omega ^2 a_2\right)\\
 +
&=a_0^3+a_1^3+a_2^3 -3 a_1 a_2 a_0\\  
 +
\det(C_4)&=\left(a_0+a_1+a_2+a_3\right) \left(a_0+\omega ^3 a_1+\omega ^2 a_2+\omega  a_3\right) \left(a_0+\omega ^2 a_1+a_2+\omega ^2 a_3\right) \left(a_0+\omega  a_1+\omega ^2 a_2+\omega ^3 a_3\right) \\
 +
&=a_0^4-2 a_2^2 a_0^2-4 a_1 a_3 a_0^2+4 a_2 a_3^2 a_0+4 a_1^2 a_2 a_0-a_1^4+a_2^4-a_3^4+2 a_1^2 a_3^2-4 a_1 a_2^2 a_3
 +
\end{aligned}
 +
\end{array}
 +
</math>
  
 
 
 
 
 
  
 
+
===정수 계수 순환 행렬의 예===
 +
$$
 +
\begin{array}{l|l}
 +
\left(
 +
\begin{array}{c}
 +
1
 +
\end{array}
 +
\right) & 1 \\
 +
\hline
 +
\left(
 +
\begin{array}{cc}
 +
1 & 4 \\
 +
4 & 1
 +
\end{array}
 +
\right) & -15 \\
 +
\hline
 +
\left(
 +
\begin{array}{ccc}
 +
1 & 4 & 9 \\
 +
9 & 1 & 4 \\
 +
4 & 9 & 1
 +
\end{array}
 +
\right) & 686 \\
 +
\hline
 +
\left(
 +
\begin{array}{cccc}
 +
1 & 4 & 9 & 16 \\
 +
16 & 1 & 4 & 9 \\
 +
9 & 16 & 1 & 4 \\
 +
4 & 9 & 16 & 1
 +
\end{array}
 +
\right) & -62400 \\
 +
\hline
 +
\left(
 +
\begin{array}{ccccc}
 +
1 & 4 & 9 & 16 & 25 \\
 +
25 & 1 & 4 & 9 & 16 \\
 +
16 & 25 & 1 & 4 & 9 \\
 +
9 & 16 & 25 & 1 & 4 \\
 +
4 & 9 & 16 & 25 & 1
 +
\end{array}
 +
\right) & 9406375
 +
\end{array}
 +
$$
  
 
==역사==
 
==역사==
37번째 줄: 92번째 줄:
 
* [[수학사 연표]]
 
* [[수학사 연표]]
  
 
 
  
 
 
 
 
43번째 줄: 97번째 줄:
 
==메모==
 
==메모==
  
* [http://mathoverflow.net/questions/104368/rational-solutions-to-x3-y3-z3-3xyz-1 ]http://mathoverflow.net/questions/104368/rational-solutions-to-x3-y3-z3-3xyz-1
+
* http://mathoverflow.net/questions/104368/rational-solutions-to-x3-y3-z3-3xyz-1
 
* http://videolectures.net/mit18085f07_strang_lec23/
 
* http://videolectures.net/mit18085f07_strang_lec23/
* Math Overflow http://mathoverflow.net/search?q=
 
 
 
 
  
 
 
 
 
62번째 줄: 113번째 줄:
  
 
==수학용어번역==
 
==수학용어번역==
 +
* {{학술용어집|url=circulant}}
  
*  단어사전<br>
 
** http://translate.google.com/#en|ko|
 
** http://ko.wiktionary.org/wiki/
 
* 발음사전 http://www.forvo.com/search/
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=circulant
 
* [http://www.kss.or.kr/pds/sec/dic.aspx 한국통계학회 통계학 용어 온라인 대조표]
 
* [http://cgi.postech.ac.kr/cgi-bin/cgiwrap/sand/terms/terms.cgi 한국물리학회 물리학 용어집 검색기]
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
 
 
 
  
 
 
 
 
  
 
==매스매티카 파일 및 계산 리소스==
 
==매스매티카 파일 및 계산 리소스==
 
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxdWtfcFU1dXRKV3M/edit
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxdWtfcFU1dXRKV3M/edit
* http://www.wolframalpha.com/input/?i=
 
* http://functions.wolfram.com/
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://people.math.sfu.ca/%7Ecbm/aands/toc.htm Abramowitz and Stegun Handbook of mathematical functions]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
* [http://numbers.computation.free.fr/Constants/constants.html Numbers, constants and computation]
 
* [https://docs.google.com/open?id=0B8XXo8Tve1cxMWI0NzNjYWUtNmIwZi00YzhkLTkzNzQtMDMwYmVmYmIxNmIw 매스매티카 파일 목록]
 
 
 
 
  
 
 
 
 
97번째 줄: 127번째 줄:
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/circulant_matrix
 
* http://en.wikipedia.org/wiki/circulant_matrix
* [http://www.encyclopediaofmath.org/index.php/Main_Page Encyclopaedia of Mathematics]
 
* [http://dlmf.nist.gov NIST Digital Library of Mathematical Functions]
 
* [http://eqworld.ipmnet.ru/ The World of Mathematical Equations]
 
 
 
 
 
 
 
 
==리뷰논문, 에세이, 강의노트==
 
  
* [http://www.ams.org/notices/201203/rtx120300368p.pdf On Circulant Matrices] Irwin Kra and Santiago R. Simanca
 
  
 
 
 
 
  
 
+
==리뷰, 에세이, 강의노트==
  
 +
* Irwin Kra and Santiago R. Simanca [http://www.ams.org/notices/201203/rtx120300368p.pdf On Circulant Matrices]
  
  
 
 
 
 
 
 
[[분류:선형대수학]]
 
[[분류:선형대수학]]

2014년 1월 20일 (월) 05:11 판

개요

\(C_n=\begin{bmatrix}a_0 & a_{1} & \dots & a_{n-2} & a_{n-1} \\a_{n-1} & a_0 & a_{1} & & a_{n-2} \\\vdots & a_{n-1}& a_0 & \ddots & \vdots \\a_{2} & & \ddots & \ddots & a_{1} \\a_{1} & a_{2} & \dots & a_{n-1} & a_0 \\\end{bmatrix}\) 꼴의 행렬

 

\(\left( \begin{array}{c} a_0 \end{array} \right)\)

\(\left( \begin{array}{cc} a_0 & a_1 \\ a_1 & a_0 \end{array} \right)\)

\(\left( \begin{array}{ccc} a_0 & a_1 & a_2 \\ a_2 & a_0 & a_1 \\ a_1 & a_2 & a_0 \end{array} \right)\)

\(\left( \begin{array}{cccc} a_0 & a_1 & a_2 & a_3 \\ a_3 & a_0 & a_1 & a_2 \\ a_2 & a_3 & a_0 & a_1 \\ a_1 & a_2 & a_3 & a_0 \end{array} \right)\)

\(\left( \begin{array}{ccccc} a_0 & a_1 & a_2 & a_3 & a_4 \\ a_4 & a_0 & a_1 & a_2 & a_3 \\ a_3 & a_4 & a_0 & a_1 & a_2 \\ a_2 & a_3 & a_4 & a_0 & a_1 \\ a_1 & a_2 & a_3 & a_4 & a_0 \end{array} \right)\)

 

 

행렬식

정리

$C_n$의 행렬식은 다음으로 주어진다 \[\det(C_n)=\prod _{j=0}^{n-1} \sum _{k=0}^{n-1} \omega_{j} ^{ k} a_k\] 여기서 \(\omega_j=\exp \left(\frac{2\pi i j}{n}\right)\)

\[ \begin{array}{l} \begin{aligned} \det(C_1)&=a_0 \\ \det(C_2)&=\left(a_0+a_1\right) \left(a_0+\omega a_1\right) \\ &=a_0^2-a_1^2 \\ \det(C_3)&=\left(a_0+a_1+a_2\right) \left(a_0+\omega ^2 a_1+\omega a_2\right) \left(a_0+\omega a_1+\omega ^2 a_2\right)\\ &=a_0^3+a_1^3+a_2^3 -3 a_1 a_2 a_0\\ \det(C_4)&=\left(a_0+a_1+a_2+a_3\right) \left(a_0+\omega ^3 a_1+\omega ^2 a_2+\omega a_3\right) \left(a_0+\omega ^2 a_1+a_2+\omega ^2 a_3\right) \left(a_0+\omega a_1+\omega ^2 a_2+\omega ^3 a_3\right) \\ &=a_0^4-2 a_2^2 a_0^2-4 a_1 a_3 a_0^2+4 a_2 a_3^2 a_0+4 a_1^2 a_2 a_0-a_1^4+a_2^4-a_3^4+2 a_1^2 a_3^2-4 a_1 a_2^2 a_3 \end{aligned} \end{array} \]


정수 계수 순환 행렬의 예

$$ \begin{array}{l|l} \left( \begin{array}{c} 1 \end{array} \right) & 1 \\ \hline \left( \begin{array}{cc} 1 & 4 \\ 4 & 1 \end{array} \right) & -15 \\ \hline \left( \begin{array}{ccc} 1 & 4 & 9 \\ 9 & 1 & 4 \\ 4 & 9 & 1 \end{array} \right) & 686 \\ \hline \left( \begin{array}{cccc} 1 & 4 & 9 & 16 \\ 16 & 1 & 4 & 9 \\ 9 & 16 & 1 & 4 \\ 4 & 9 & 16 & 1 \end{array} \right) & -62400 \\ \hline \left( \begin{array}{ccccc} 1 & 4 & 9 & 16 & 25 \\ 25 & 1 & 4 & 9 & 16 \\ 16 & 25 & 1 & 4 & 9 \\ 9 & 16 & 25 & 1 & 4 \\ 4 & 9 & 16 & 25 & 1 \end{array} \right) & 9406375 \end{array} $$

역사

 


 

메모

 

관련된 항목들

 

 

수학용어번역


 

매스매티카 파일 및 계산 리소스

 

사전 형태의 자료


 

리뷰, 에세이, 강의노트