"모든 자연수의 곱과 리만제타함수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
73번째 줄: 73번째 줄:
 
* [[파이가 아니라 2파이다?]]<br>
 
* [[파이가 아니라 2파이다?]]<br>
 
* [[L-함수의 미분]]
 
* [[L-함수의 미분]]
 +
[[분류:리만 제타 함수]]

2013년 4월 5일 (금) 04:12 판

개요

  • 모든 자연수의 곱은 물론 발산
  • 리만제타함수의 0에서의 미분값을 묻는 문제로 이해할 수 있음
  • \(\zeta'(0)=-\log{\sqrt{2\pi}}\) (아래에서 증명함)
  • \(\zeta(s)=\sum_{n=1}^{\infty}\frac{1}{n^s}\) , \(\zeta'(s)=-\sum_{n=1}^{\infty}\frac{\log n}{n^s}\)
  • 여기서 (형식적으로)\[\zeta'(0)=-\sum_{n=1}^{\infty}\log n\]\[\prod_{1}^{\infty} n =\sqrt{2\pi}\]
  • 즉 모든 자연수의 곱은 \(\sqrt{2\pi}\) (!?) 

 

 

증명에 앞서 알아야 할 사실들

  • 감마함수
  • 리만제타함수의 함수방정식\[\zeta(s)=\frac{\pi^{-(1-s)/2}\ \Gamma\left(\frac{1-s}{2}\right)\ \zeta(1-s)}{\pi^{-s/2}\ \Gamma\left(\frac{s}{2}\right)}=\frac{\pi^{s-1/2}\ \Gamma\left(\frac{1-s}{2}\right)\ \zeta(1-s)}{\Gamma\left(\frac{s}{2}\right)}\]

 

증명

\(\zeta(s)=\frac{\pi^{-(1-s)/2}\ \Gamma\left(\frac{1-s}{2}\right)\ \zeta(1-s)}{\pi^{-s/2}\ \Gamma\left(\frac{s}{2}\right)}=\frac{\pi^{s-1/2}\ \Gamma\left(\frac{1-s}{2}\right)\ \zeta(1-s)}{\Gamma\left(\frac{s}{2}\right)}\)

 

\(f(s)=s\zeta(1-s)\) 라 두자.

 

\(\zeta(s)=\frac{\pi^{s-1/2}\ \Gamma(\frac{1-s}{2})f(s)}{2\Gamma(\frac{s}{2}+1)}\) 의 \(s=0\) 에서의 로그미분값을 계산하면, 다음을 얻는다. 

\(\frac{\zeta'(0)}{\zeta(0)}=\log\pi-\frac{1}{2}\frac{\Gamma'(\frac{1}{2})}{\Gamma(\frac{1}{2})}+\frac{f'(0)}{f(0)}-\frac{1}{2}\frac{\Gamma'(1)}{\Gamma(1)}=\log\pi-\frac{1}{2}(\psi(1)+\psi(\frac{1}{2}))+ \frac{f'(0)}{f(0)} \)

여기서 \(\psi(x) =\frac{d}{dx} \ln{\Gamma(x)}= \frac{\Gamma'(x)}{\Gamma(x)}\)

 

\(\frac{f'(0)}{f(0)}=-\gamma\), \(\psi(1) = -\gamma\,\!\), \(\psi\left(\frac{1}{2}\right) = -2\ln{2} - \gamma\)감마함수

이에 대해서는 감마함수 의 Digamma 함수 부분 참조.

한편, \(\zeta(s)=\frac{1}{s-1}+\gamma+O((s-1))\) 를 이용하면, \(s=0\) 주변에서 \(f(s)=-1+\gamma s+O(s^2)\) .

 

 

따라서 다음값을 얻는다.

\(\frac{\zeta'(0)}{\zeta(0)}=\log\pi-\frac{1}{2}(-\gamma-2\ln2-\gamma)-\gamma=\log 2\pi\)

\(\zeta(0)=-\frac{1}{2}\) 이므로, \(\zeta'(0)=-\log \sqrt{2\pi}\)

 

상위 주제

 

 

역사

 

관련된 항목들