"베일리 사슬(Bailey chain)"의 두 판 사이의 차이
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) |
||
1번째 줄: | 1번째 줄: | ||
==개요== | ==개요== | ||
− | * 기존의 베일리 쌍 relative to <em>a </em> 로부터 새로운 베일리 쌍 relative to <em>a</em> 을 얻는 방법:<math>\alpha^\prime_n= \frac{(\rho_1;q)_n(\rho_2;q)_n(aq/\rho_1\rho_2)^n}{(aq/\rho_1;q)_n(aq/\rho_2;q)_n}\alpha_n</math>:<math>\beta^\prime_n = \sum_{r=0}^{n}\frac{(\rho_1;q)_r(\rho_2;q)_r(aq/\rho_1\rho_2;q)_{n-r}(aq/\rho_1\rho_2)^r}{(q;q)_{n-r}(aq/\rho_1;q)_n(aq/\rho_2;q)_n}\beta_r</math | + | * 기존의 베일리 쌍 relative to <em>a </em> 로부터 새로운 베일리 쌍 relative to <em>a</em> 을 얻는 방법:<math>\alpha^\prime_n= \frac{(\rho_1;q)_n(\rho_2;q)_n(aq/\rho_1\rho_2)^n}{(aq/\rho_1;q)_n(aq/\rho_2;q)_n}\alpha_n</math>:<math>\beta^\prime_n = \sum_{r=0}^{n}\frac{(\rho_1;q)_r(\rho_2;q)_r(aq/\rho_1\rho_2;q)_{n-r}(aq/\rho_1\rho_2)^r}{(q;q)_{n-r}(aq/\rho_1;q)_n(aq/\rho_2;q)_n}\beta_r</math> |
− | * 위에서 <math>\rho_1,\rho_2\to \infty</math> 일 경우, 다음을 얻는다:<math>\alpha^\prime_n= a^nq^{n^2}\alpha_n</math>:<math>\beta^\prime_n = \sum_{r=0}^{n}\frac{a^rq^{r^2}}{(q)_{n-r}}\beta_r</math | + | * 위에서 <math>\rho_1,\rho_2\to \infty</math> 일 경우, 다음을 얻는다:<math>\alpha^\prime_n= a^nq^{n^2}\alpha_n</math>:<math>\beta^\prime_n = \sum_{r=0}^{n}\frac{a^rq^{r^2}}{(q)_{n-r}}\beta_r</math> |
− | * [[베일리 쌍(Bailey pair)과 베일리 보조정리|베일리 쌍(Bailey pair)]] 이 만족하는 관계:<math>\beta^{'}_n=\sum_{r=0}^{n}\frac{\alpha^{'}_r}{(q)_{n-r}(aq)_{n+r}}</math> 로부터, 다음을 얻는다.:<math>\sum_{r=0}^{n}\frac{a^{r}q^{r^2}\alpha_r}{(q)_{n-r}(aq)_{n+r}}=\sum_{n'=0}^{n}\frac{a^{n'}q^{n'{^2}}}{(q)_{n-n'}}\beta_{n'}</math | + | * [[베일리 쌍(Bailey pair)과 베일리 보조정리|베일리 쌍(Bailey pair)]] 이 만족하는 관계:<math>\beta^{'}_n=\sum_{r=0}^{n}\frac{\alpha^{'}_r}{(q)_{n-r}(aq)_{n+r}}</math> 로부터, 다음을 얻는다.:<math>\sum_{r=0}^{n}\frac{a^{r}q^{r^2}\alpha_r}{(q)_{n-r}(aq)_{n+r}}=\sum_{n'=0}^{n}\frac{a^{n'}q^{n'{^2}}}{(q)_{n-n'}}\beta_{n'}</math> |
11번째 줄: | 11번째 줄: | ||
==사슬의 반복 적용== | ==사슬의 반복 적용== | ||
− | * 사슬 구성을 여러번 반복하면,:<math>\sum_{r=0}^{n}\frac{a^{kr}q^{kr^2}\alpha_r}{(q)_{n-r}(aq)_{n+r}}=\sum_{n_1=0}^{n}\sum_{n_2=0}^{n_1}\cdots\sum_{n_k=0}^{n_{k-1}}\frac{a^{n_1+\cdots+n_{k}}q^{n_1^2+\cdots+n_{k}^2}\beta_{n_{k}}}{(q)_{n-n_{1}}(q)_{n_{1}-n_{2}}\cdots (q)_{n_{k-2}-n_{k-1}}(q)_{n_{k-1}-n_{k}}}</math | + | * 사슬 구성을 여러번 반복하면,:<math>\sum_{r=0}^{n}\frac{a^{kr}q^{kr^2}\alpha_r}{(q)_{n-r}(aq)_{n+r}}=\sum_{n_1=0}^{n}\sum_{n_2=0}^{n_1}\cdots\sum_{n_k=0}^{n_{k-1}}\frac{a^{n_1+\cdots+n_{k}}q^{n_1^2+\cdots+n_{k}^2}\beta_{n_{k}}}{(q)_{n-n_{1}}(q)_{n_{1}-n_{2}}\cdots (q)_{n_{k-2}-n_{k-1}}(q)_{n_{k-1}-n_{k}}}</math> |
− | * <math>n\to\infty</math> 이면:<math>\frac{1}{(aq)_{\infty}}\sum_{n=0}^{\infty}a^{kn}q^{kn^{2}}\alpha_{n}=\sum_{n_1\geq\cdots\geq n_{k}\geq0}\frac{a^{n_1+\cdots+n_{k}}q^{n_1^2+\cdots+n_{k}^2}\beta_{n_{k}}}{(q)_{n_{1}-n_{2}}\cdots (q)_{n_{k-2}-n_{k-1}}(q)_{n_{k-1}-n_{k}}}</math | + | * <math>n\to\infty</math> 이면:<math>\frac{1}{(aq)_{\infty}}\sum_{n=0}^{\infty}a^{kn}q^{kn^{2}}\alpha_{n}=\sum_{n_1\geq\cdots\geq n_{k}\geq0}\frac{a^{n_1+\cdots+n_{k}}q^{n_1^2+\cdots+n_{k}^2}\beta_{n_{k}}}{(q)_{n_{1}-n_{2}}\cdots (q)_{n_{k-2}-n_{k-1}}(q)_{n_{k-1}-n_{k}}}</math> |
22번째 줄: | 22번째 줄: | ||
* 초기 베일리 쌍 | * 초기 베일리 쌍 | ||
− | :<math>\alpha_{L}=(-1)^{L}q^{\binom{L}{2}}\frac{(1-aq^{2L})(a)_{L}}{(1-a)(q)_{L}}=(-1)^{L}q^{L(L-1)/2}\frac{(1-aq^{2L})(a)_{L}}{(1-a)(q)_{L}}</math>:<math>\beta_{L}=\delta_{L,0}</math | + | :<math>\alpha_{L}=(-1)^{L}q^{\binom{L}{2}}\frac{(1-aq^{2L})(a)_{L}}{(1-a)(q)_{L}}=(-1)^{L}q^{L(L-1)/2}\frac{(1-aq^{2L})(a)_{L}}{(1-a)(q)_{L}}</math>:<math>\beta_{L}=\delta_{L,0}</math> For example, if a=1,:<math>\alpha_{L}=(-1)^{L}q^{L(L-1)/2}(1+q^{L})=(-1)^{L}(q^{(3L^2-L)/2}+q^{(3L^2+L)/2})</math> |
* 베일리 사슬을 k번 적용하면, 다음을 얻는다 | * 베일리 사슬을 k번 적용하면, 다음을 얻는다 | ||
:<math>\alpha_{L}=(-1)^{L}a^{kL}q^{kL^{2}+L^2/2-L/2}\frac{(1-aq^{2L})(a)_{L}}{(1-a)(q)_{L}}</math> | :<math>\alpha_{L}=(-1)^{L}a^{kL}q^{kL^{2}+L^2/2-L/2}\frac{(1-aq^{2L})(a)_{L}}{(1-a)(q)_{L}}</math> | ||
− | :<math>\beta_{L}=\sum_{L\geq n_1\geq\cdots\geq n_{k-1}\geq0}\frac{a^{n_1+\cdots+n_{k-1}}q^{n_1^2+\cdots+n_{k-1}^2}}{(q)_{L-n_1}(q)_{n_{1}-n_{2}}\cdots (q)_{n_{k-2}-n_{k-1}}(q)_{n_{k-1}}}</math | + | :<math>\beta_{L}=\sum_{L\geq n_1\geq\cdots\geq n_{k-1}\geq0}\frac{a^{n_1+\cdots+n_{k-1}}q^{n_1^2+\cdots+n_{k-1}^2}}{(q)_{L-n_1}(q)_{n_{1}-n_{2}}\cdots (q)_{n_{k-2}-n_{k-1}}(q)_{n_{k-1}}}</math> |
* 얻어진 항등식 | * 얻어진 항등식 | ||
− | :<math>\frac{1}{(q)_{\infty}}\sum_{r=-\infty}^{\infty}(-1)^{r}q^{r((2k+1)r+1-2jk)/2}=\sum_{n_1\geq\cdots\geq n_{k}\geq0}\frac{q^{n_1^2+\cdots+n_{k}^2+j(n_1+\cdots+n_{k})}}{(q)_{n_{1}-n_{2}}\cdots (q)_{n_{k-2}-n_{k-1}}(q)_{n_{k-1}}}</math | + | :<math>\frac{1}{(q)_{\infty}}\sum_{r=-\infty}^{\infty}(-1)^{r}q^{r((2k+1)r+1-2jk)/2}=\sum_{n_1\geq\cdots\geq n_{k}\geq0}\frac{q^{n_1^2+\cdots+n_{k}^2+j(n_1+\cdots+n_{k})}}{(q)_{n_{1}-n_{2}}\cdots (q)_{n_{k-2}-n_{k-1}}(q)_{n_{k-1}}}</math> |
− | * | + | * <math>k=1, a=1</math>이면, [[오일러의 오각수정리(pentagonal number theorem)]]를 얻는다 |
:<math>(q)_{\infty}=\sum_{k=-\infty}^\infty(-1)^kq^{k(3k-1)/2}</math> | :<math>(q)_{\infty}=\sum_{k=-\infty}^\infty(-1)^kq^{k(3k-1)/2}</math> | ||
− | * | + | * <math>k=2, a=1</math>이면, [[로저스-라마누잔 항등식]]의 하나를 얻는다 |
:<math>\sum_{n=0}^\infty \frac {q^{n^2}} {(q;q)_n} = \frac {1}{(q;q^5)_\infty (q^4; q^5)_\infty} </math> | :<math>\sum_{n=0}^\infty \frac {q^{n^2}} {(q;q)_n} = \frac {1}{(q;q^5)_\infty (q^4; q^5)_\infty} </math> | ||
− | * | + | * <math>k=2, a=q</math>이면, 또다른 [[로저스-라마누잔 항등식]]을 얻는다 |
:<math>\sum_{n=0}^\infty \frac {q^{n^2+n}} {(q;q)_n} = \frac {1}{(q^2;q^5)_\infty (q^3; q^5)_\infty}</math> | :<math>\sum_{n=0}^\infty \frac {q^{n^2+n}} {(q;q)_n} = \frac {1}{(q^2;q^5)_\infty (q^3; q^5)_\infty}</math> | ||
* 결과를 표현하기 위해 [[자코비 삼중곱(Jacobi triple product)]]이 종종 사용된다 | * 결과를 표현하기 위해 [[자코비 삼중곱(Jacobi triple product)]]이 종종 사용된다 | ||
:<math>\sum_{n=-\infty}^\infty z^{n}q^{n^2}= \prod_{m=1}^\infty \left( 1 - q^{2m}\right) \left( 1 + zq^{2m-1}\right) \left( 1 + z^{-1}q^{2m-1}\right)</math> | :<math>\sum_{n=-\infty}^\infty z^{n}q^{n^2}= \prod_{m=1}^\infty \left( 1 - q^{2m}\right) \left( 1 + zq^{2m-1}\right) \left( 1 + z^{-1}q^{2m-1}\right)</math> | ||
− | * | + | * <math>k>2</math>인 경우는, [[앤드류스-고든 항등식(Andrews-Gordon identity)]]의 일부를 얻을 수 있다 |
* 모든 [[앤드류스-고든 항등식(Andrews-Gordon identity)]] 을 얻기 위해서는, [[베일리 격자(Bailey lattice)]]의 방법이 필요하다 | * 모든 [[앤드류스-고든 항등식(Andrews-Gordon identity)]] 을 얻기 위해서는, [[베일리 격자(Bailey lattice)]]의 방법이 필요하다 | ||
70번째 줄: | 70번째 줄: | ||
* Paule, [http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.71.6203 The Concept of Bailey Chains] | * Paule, [http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.71.6203 The Concept of Bailey Chains] | ||
− | * George E. Andrews[http://projecteuclid.org/euclid.pjm/1102708707 Multiple series Rogers-Ramanujan type identities.], Pacific J. Math. Volume 114, Number 2 (1984), 267-283. | + | * George E. Andrews[http://projecteuclid.org/euclid.pjm/1102708707 Multiple series Rogers-Ramanujan type identities.], Pacific J. Math. Volume 114, Number 2 (1984), 267-283. |
[[분류:q-급수]] | [[분류:q-급수]] |
2020년 11월 13일 (금) 21:22 판
개요
- 기존의 베일리 쌍 relative to a 로부터 새로운 베일리 쌍 relative to a 을 얻는 방법\[\alpha^\prime_n= \frac{(\rho_1;q)_n(\rho_2;q)_n(aq/\rho_1\rho_2)^n}{(aq/\rho_1;q)_n(aq/\rho_2;q)_n}\alpha_n\]\[\beta^\prime_n = \sum_{r=0}^{n}\frac{(\rho_1;q)_r(\rho_2;q)_r(aq/\rho_1\rho_2;q)_{n-r}(aq/\rho_1\rho_2)^r}{(q;q)_{n-r}(aq/\rho_1;q)_n(aq/\rho_2;q)_n}\beta_r\]
- 위에서 \(\rho_1,\rho_2\to \infty\) 일 경우, 다음을 얻는다\[\alpha^\prime_n= a^nq^{n^2}\alpha_n\]\[\beta^\prime_n = \sum_{r=0}^{n}\frac{a^rq^{r^2}}{(q)_{n-r}}\beta_r\]
- 베일리 쌍(Bailey pair) 이 만족하는 관계\[\beta^{'}_n=\sum_{r=0}^{n}\frac{\alpha^{'}_r}{(q)_{n-r}(aq)_{n+r}}\] 로부터, 다음을 얻는다.\[\sum_{r=0}^{n}\frac{a^{r}q^{r^2}\alpha_r}{(q)_{n-r}(aq)_{n+r}}=\sum_{n'=0}^{n}\frac{a^{n'}q^{n'{^2}}}{(q)_{n-n'}}\beta_{n'}\]
사슬의 반복 적용
- 사슬 구성을 여러번 반복하면,\[\sum_{r=0}^{n}\frac{a^{kr}q^{kr^2}\alpha_r}{(q)_{n-r}(aq)_{n+r}}=\sum_{n_1=0}^{n}\sum_{n_2=0}^{n_1}\cdots\sum_{n_k=0}^{n_{k-1}}\frac{a^{n_1+\cdots+n_{k}}q^{n_1^2+\cdots+n_{k}^2}\beta_{n_{k}}}{(q)_{n-n_{1}}(q)_{n_{1}-n_{2}}\cdots (q)_{n_{k-2}-n_{k-1}}(q)_{n_{k-1}-n_{k}}}\]
- \(n\to\infty\) 이면\[\frac{1}{(aq)_{\infty}}\sum_{n=0}^{\infty}a^{kn}q^{kn^{2}}\alpha_{n}=\sum_{n_1\geq\cdots\geq n_{k}\geq0}\frac{a^{n_1+\cdots+n_{k}}q^{n_1^2+\cdots+n_{k}^2}\beta_{n_{k}}}{(q)_{n_{1}-n_{2}}\cdots (q)_{n_{k-2}-n_{k-1}}(q)_{n_{k-1}-n_{k}}}\]
예
- 초기 베일리 쌍
\[\alpha_{L}=(-1)^{L}q^{\binom{L}{2}}\frac{(1-aq^{2L})(a)_{L}}{(1-a)(q)_{L}}=(-1)^{L}q^{L(L-1)/2}\frac{(1-aq^{2L})(a)_{L}}{(1-a)(q)_{L}}\]\[\beta_{L}=\delta_{L,0}\] For example, if a=1,\[\alpha_{L}=(-1)^{L}q^{L(L-1)/2}(1+q^{L})=(-1)^{L}(q^{(3L^2-L)/2}+q^{(3L^2+L)/2})\]
- 베일리 사슬을 k번 적용하면, 다음을 얻는다
\[\alpha_{L}=(-1)^{L}a^{kL}q^{kL^{2}+L^2/2-L/2}\frac{(1-aq^{2L})(a)_{L}}{(1-a)(q)_{L}}\] \[\beta_{L}=\sum_{L\geq n_1\geq\cdots\geq n_{k-1}\geq0}\frac{a^{n_1+\cdots+n_{k-1}}q^{n_1^2+\cdots+n_{k-1}^2}}{(q)_{L-n_1}(q)_{n_{1}-n_{2}}\cdots (q)_{n_{k-2}-n_{k-1}}(q)_{n_{k-1}}}\]
- 얻어진 항등식
\[\frac{1}{(q)_{\infty}}\sum_{r=-\infty}^{\infty}(-1)^{r}q^{r((2k+1)r+1-2jk)/2}=\sum_{n_1\geq\cdots\geq n_{k}\geq0}\frac{q^{n_1^2+\cdots+n_{k}^2+j(n_1+\cdots+n_{k})}}{(q)_{n_{1}-n_{2}}\cdots (q)_{n_{k-2}-n_{k-1}}(q)_{n_{k-1}}}\]
- \(k=1, a=1\)이면, 오일러의 오각수정리(pentagonal number theorem)를 얻는다
\[(q)_{\infty}=\sum_{k=-\infty}^\infty(-1)^kq^{k(3k-1)/2}\]
- \(k=2, a=1\)이면, 로저스-라마누잔 항등식의 하나를 얻는다
\[\sum_{n=0}^\infty \frac {q^{n^2}} {(q;q)_n} = \frac {1}{(q;q^5)_\infty (q^4; q^5)_\infty} \]
- \(k=2, a=q\)이면, 또다른 로저스-라마누잔 항등식을 얻는다
\[\sum_{n=0}^\infty \frac {q^{n^2+n}} {(q;q)_n} = \frac {1}{(q^2;q^5)_\infty (q^3; q^5)_\infty}\]
- 결과를 표현하기 위해 자코비 삼중곱(Jacobi triple product)이 종종 사용된다
\[\sum_{n=-\infty}^\infty z^{n}q^{n^2}= \prod_{m=1}^\infty \left( 1 - q^{2m}\right) \left( 1 + zq^{2m-1}\right) \left( 1 + z^{-1}q^{2m-1}\right)\]
- \(k>2\)인 경우는, 앤드류스-고든 항등식(Andrews-Gordon identity)의 일부를 얻을 수 있다
- 모든 앤드류스-고든 항등식(Andrews-Gordon identity) 을 얻기 위해서는, 베일리 격자(Bailey lattice)의 방법이 필요하다
역사
관련된 항목들
사전 형태의 자료
관련논문
- Paule, The Concept of Bailey Chains
- George E. AndrewsMultiple series Rogers-Ramanujan type identities., Pacific J. Math. Volume 114, Number 2 (1984), 267-283.