"Q-이항계수 (가우스 다항식)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
잔글 (찾아 바꾸기 – “<h5 (.*)">” 문자열을 “==” 문자열로)
1번째 줄: 1번째 줄:
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소==
+
==이 항목의 스프링노트 원문주소==
  
 
* [[q-이항계수 (가우스 다항식)|q-이항계수(가우스 다항식)]]<br>
 
* [[q-이항계수 (가우스 다항식)|q-이항계수(가우스 다항식)]]<br>
7번째 줄: 7번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요==
+
==개요==
  
 
* [[이항계수와 조합|이항계수]]의 q-analogue<br>
 
* [[이항계수와 조합|이항계수]]의 q-analogue<br>
19번째 줄: 19번째 줄:
 
 
 
 
  
<h5 style="line-height: 2em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">양자평면==
+
==양자평면==
  
 
*  세 변수 <math>x,y,q</math> 사이에 다음과 같은 관계를 정의<br><math>yx=qxy,xq=qx,yq=qy</math><br>
 
*  세 변수 <math>x,y,q</math> 사이에 다음과 같은 관계를 정의<br><math>yx=qxy,xq=qx,yq=qy</math><br>
31번째 줄: 31번째 줄:
 
 
 
 
  
<h5 style="line-height: 2em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">q-이항계수==
+
==q-이항계수==
  
 
*  정의<br><math>{n \choose r}_q=\frac{[n]_q!}{[r]_q![n - r]_q!}}=\frac{(q;q)_n}{(q;q)_r(q;q)_{n-r}}=\frac{(1-q)_q^n}{(1-q)_q^r (1-q)_q^{n-r}}</math><br> 풀어쓰면 다음과 같다<br><math>{n \choose r}_q=\frac{(1-q^n)\cdots(1-q^{n-r+1})}{(1-q^r)\cdots(1-q^{1})}</math><br>
 
*  정의<br><math>{n \choose r}_q=\frac{[n]_q!}{[r]_q![n - r]_q!}}=\frac{(q;q)_n}{(q;q)_r(q;q)_{n-r}}=\frac{(1-q)_q^n}{(1-q)_q^r (1-q)_q^{n-r}}</math><br> 풀어쓰면 다음과 같다<br><math>{n \choose r}_q=\frac{(1-q^n)\cdots(1-q^{n-r+1})}{(1-q^r)\cdots(1-q^{1})}</math><br>
41번째 줄: 41번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">점화식==
+
==점화식==
  
 
* [[이항계수와 조합]]에서 얻은 식의 q-analogue<br><math>{n\choose r-1}_q+q^r{n\choose r}_q={n+1\choose r}_q</math><br>
 
* [[이항계수와 조합]]에서 얻은 식의 q-analogue<br><math>{n\choose r-1}_q+q^r{n\choose r}_q={n+1\choose r}_q</math><br>
50번째 줄: 50번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">역사==
+
==역사==
  
 
 
 
 
62번째 줄: 62번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">메모==
+
==메모==
  
 
* http://www.wolframalpha.com/input/?i=q-binomial+coefficient<br>
 
* http://www.wolframalpha.com/input/?i=q-binomial+coefficient<br>
73번째 줄: 73번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 항목들==
+
==관련된 항목들==
  
 
* [[이항계수와 조합]]<br>
 
* [[이항계수와 조합]]<br>
81번째 줄: 81번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역==
+
==수학용어번역==
  
 
* http://www.google.com/dictionary?langpair=en|ko&q=
 
* http://www.google.com/dictionary?langpair=en|ko&q=
92번째 줄: 92번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">사전 형태의 자료==
+
==사전 형태의 자료==
  
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
105번째 줄: 105번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련논문==
+
==관련논문==
  
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.jstor.org/action/doBasicSearch?Query=
114번째 줄: 114번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서==
+
==관련도서==
  
 
*  도서내검색<br>
 
*  도서내검색<br>

2012년 11월 1일 (목) 13:24 판

이 항목의 스프링노트 원문주소

 

 

개요

 

 

 

양자평면

  • 세 변수 \(x,y,q\) 사이에 다음과 같은 관계를 정의
    \(yx=qxy,xq=qx,yq=qy\)
  • 거듭제곱의 전개
    \((x+y)=x+y\)
    \((x+y)^2=x^2+(1+q)xy+y^2\)
    \((x+y)^3=x^3+(1+q+q^2)x^2y+(1+q+q^2)xy^2+y^3\)
    \((x+y)^4=x^4+(1+q+q^2+q^3)x^3y+\left(1+q^2\right) \left(1+q+q^2\right)x^2y^2+(1+q+q^2+q^3)xy^3+y^4\)
  • 여기서 등장하는 계수들을 q-이항계수로 정의하고자 한다

 

 

 

q-이항계수

  • 정의
    \({n \choose r}_q=\frac{[n]_q!}{[r]_q![n - r]_q!}}=\frac{(q;q)_n}{(q;q)_r(q;q)_{n-r}}=\frac{(1-q)_q^n}{(1-q)_q^r (1-q)_q^{n-r}}\)
    풀어쓰면 다음과 같다
    \({n \choose r}_q=\frac{(1-q^n)\cdots(1-q^{n-r+1})}{(1-q^r)\cdots(1-q^{1})}\)

  • \({4 \choose 1}_q=1+q+q^2+q^3\)
    \({4 \choose 2}_q=(1+q+q^2)(1+q^2)=1+q+2q^2+q^3+q^4\)
    \({5 \choose 1}_q=1+q+q^2+q^3+q^4\)
    \({5 \choose 2}_q=\left(1+q^2\right) \left(1+q+q^2+q^3+q^4\right)\)
  • \(n\)이 작을 경우에 대한 q-이항계수의 목록 참조

 

 

점화식

  • 이항계수와 조합에서 얻은 식의 q-analogue
    \({n\choose r-1}_q+q^r{n\choose r}_q={n+1\choose r}_q\)
  • 예 q-이항계수의 목록 항목 참조
    \({4\choose 1}_q+q^2{4\choose 2}_q={5\choose 2}_q\)
    \(1+q+q^2+q^3+q^2(1+q+2q^2+q^3+q^4)=1+q+q^2+q^3+q^4+q^2(1+q+q^2+q^3+q^4)=\left(1+q^2\right) \left(1+q+q^2+q^3+q^4\right)\)

 

 

역사

 

 

 

메모

 

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서