"행렬 역학"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) |
||
25번째 줄: | 25번째 줄: | ||
<math>P=\left(p_{mn}e^{2\pi it\nu_{mn}}\right)</math> | <math>P=\left(p_{mn}e^{2\pi it\nu_{mn}}\right)</math> | ||
− | * 여기서 <math>q_{mn},p_{mn}</math> : amplitudes, <math>\nu_{mn}</math> : frequency 로 다음 조건을 만족시킴 | + | * 여기서 <math>q_{mn},p_{mn}</math> : amplitudes, <math>\nu_{mn}</math> : frequency 로 다음 조건을 만족시킴 |
** <math>q_{mn}=q_{nm}^{*}</math> | ** <math>q_{mn}=q_{nm}^{*}</math> | ||
** <math>p_{mn}=q_{nm}^{*}</math> | ** <math>p_{mn}=q_{nm}^{*}</math> | ||
47번째 줄: | 47번째 줄: | ||
==3== | ==3== | ||
− | * <math>H(P,Q)</math> 해밀토니안 | + | * <math>H(P,Q)</math> 해밀토니안 |
55번째 줄: | 55번째 줄: | ||
==4== | ==4== | ||
− | * 운동방정식 | + | * 운동방정식 |
− | * <math>\dot{Q}_i=\partial H/\partial P</math | + | * <math>\dot{Q}_i=\partial H/\partial P</math> |
− | * <math>\dot{P}=-\partial H/\partial Q</math | + | * <math>\dot{P}=-\partial H/\partial Q</math> |
110번째 줄: | 110번째 줄: | ||
==수학용어번역== | ==수학용어번역== | ||
− | * 단어사전 | + | * 단어사전 |
** http://translate.google.com/#en|ko| | ** http://translate.google.com/#en|ko| | ||
** http://ko.wiktionary.org/wiki/ | ** http://ko.wiktionary.org/wiki/ | ||
* 발음사전 http://www.forvo.com/search/ | * 발음사전 http://www.forvo.com/search/ | ||
− | * [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집] | + | * [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집] |
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr= | ** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr= | ||
* [http://www.kss.or.kr/pds/sec/dic.aspx 한국통계학회 통계학 용어 온라인 대조표] | * [http://www.kss.or.kr/pds/sec/dic.aspx 한국통계학회 통계학 용어 온라인 대조표] |
2020년 11월 13일 (금) 19:03 판
이 항목의 수학노트 원문주소
개요
- correspondence principle
1
\(*_{mn}\) 은 transition \(E_{m}\to E_{n}\) 과 관계된 양들
\(Q=\left(q_{mn}e^{2\pi it\nu_{mn}}\right)\)
\(P=\left(p_{mn}e^{2\pi it\nu_{mn}}\right)\)
- 여기서 \(q_{mn},p_{mn}\) : amplitudes, \(\nu_{mn}\) : frequency 로 다음 조건을 만족시킴
- \(q_{mn}=q_{nm}^{*}\)
- \(p_{mn}=q_{nm}^{*}\)
- \(\nu_{mn}=-\nu_{nm}\)
- \(m \neq n\) 이면, \(\nu_{mn}\neq 0\)
- \(\nu_{rs}+\nu_{st}=\nu_{rt}\)
2
- \([Q,P] = Q P - P Q = i \hbar\)
- Born-Jordan condition 이라고도 불리며 보어-좀머펠트 양자 조건에 해당
3
- \(H(P,Q)\) 해밀토니안
4
- 운동방정식
- \(\dot{Q}_i=\partial H/\partial P\)
- \(\dot{P}=-\partial H/\partial Q\)
\(H(P,Q)\) 는 대각행렬이며, 고유값은 \(E_n\)
\(E_{m}-E_{n}=\hbar \nu_{mn}\)
역사
- 1925 Heisenberg matrix mechanics
- 1926 Pauli hydrogen atom
- 1927 Heisenberg uncertainty principle
- 1930-31 Stone-von Neuman Theorem
- http://www.google.com/search?hl=en&tbs=tl:1&q=
- 수학사 연표
메모
On the other hand, matrix mechanics was invented by Heisenberg in June 1925, and presented in a fully developed form in Dirac’s first paper on quantum mechanics (received 7 November 1925) and also in the famous “three-men’s paper” of Born, Heisenberg and Jordan (received 16 November 1925).
- http://www.worldscibooks.com/etextbook/7271/7271_chap02.pdf
- A brief history of the mathematical equivalence between the two quantum mechanics
- Why were two theories (Matrix Mechanics and Wave Mechanics) deemed logically distinct, and yet equivalent, in Quantum Mechanics?
- Quantum Mechanics: Concepts and Applications
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
수학용어번역
- 단어사전
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 한국통계학회 통계학 용어 온라인 대조표
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
매스매티카 파일 및 계산 리소스
- http://www.wolframalpha.com/input/?i=
- http://functions.wolfram.com/
- NIST Digital Library of Mathematical Functions
- Abramowitz and Stegun Handbook of mathematical functions
- The On-Line Encyclopedia of Integer Sequences
- Numbers, constants and computation
- 매스매티카 파일 목록
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- The Online Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
리뷰논문, 에세이, 강의노트
- B. L. van der Waerden, From Matrix Mechanics and Wave Mechanics to Unified Quantum Mechanics
- 임경순, 행렬역학의 전개 과정