"역제곱 벡터장"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) |
||
1번째 줄: | 1번째 줄: | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==개요== | ==개요== | ||
60번째 줄: | 52번째 줄: | ||
* [[각원소 벡터장|각원소벡터장]] | * [[각원소 벡터장|각원소벡터장]] | ||
* [[드람 코호몰로지]] | * [[드람 코호몰로지]] | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
84번째 줄: | 58번째 줄: | ||
* https://docs.google.com/file/d/0B8XXo8Tve1cxS1hjenlnX0xNeFU/edit | * https://docs.google.com/file/d/0B8XXo8Tve1cxS1hjenlnX0xNeFU/edit | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
98번째 줄: | 63번째 줄: | ||
==사전 형태의 자료== | ==사전 형태의 자료== | ||
− | * | + | * http://ko.wikipedia.org/wiki/중력장 |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
+ | ==관련논문== | ||
+ | * Buscaino, Brandon, Daniel DeBra, Peter W. Graham, Giorgio Gratta, and Timothy D. Wiser. “Testing Long-Distance Modifications of Gravity to 100 Astronomical Units.” arXiv:1508.06273 [astro-Ph, Physics:gr-Qc, Physics:hep-Ex, Physics:hep-Ph, Physics:hep-Th], August 25, 2015. http://arxiv.org/abs/1508.06273. | ||
[[분류:미적분학]] | [[분류:미적분학]] |
2015년 8월 27일 (목) 06:55 판
개요
- n 차원에서 정의된 벡터장\[\mathbf{F}(\mathbf{r})=\frac{\mathbf{r}}{|\mathbf{r}|^3}\]
- 중력장과 전자기장에서 중요한 역할
- \(\phi(\mathbf{r})=-\frac{1}{|\mathbf{r}|}\) 를 포텐셜로 가짐
- \(\nabla\times\mathbf{F}=0\)
- \(\nabla\cdot\mathbf{F}=0\)
적분의 응용
- 3차원에서의 벡터장을 생각하자
- 바깥쪽으로 향이 주어진 단위구면 S에 대하여, 다음을 얻는다\[\iint_{S}\mathbf F\cdot\,{d}\mathbf{S}=4\pi\]
- (정리)\[\nabla\times\mathbf{G}=\mathbf{F}\] 를 만족시키는 벡터장 \(\mathbf{G}\)가 존재하지 않는다
(증명)\[\nabla\times\mathbf{G}=\mathbf{F}\] 를 만족시키는 벡터장 \(\mathbf{G}\) 를 가정하자.
스토크스 정리 를 적용하면, \(\iint_{S}\mathbf F\cdot\,{d}\mathbf{S}=\iint_S\ (\nabla\times\mathbf{G})\cdot\,d\mathbf{S}=\int_{\partial S}\mathbf G\cdot d\mathbf{r}=0\) 을 얻는다. 그러나\[\iint_{S}\mathbf F\cdot\,{d}\mathbf{S}=4\pi\] 이므로 모순. ■ - \(\nabla\cdot\mathbf{F}=0\) 이라고 해서 \(\nabla\times\mathbf{G}=\mathbf{F}\) 를 만족시키는 벡터장 \(\mathbf{G}\)가 반드시 존재하는 것은 아니다
- obstruction : second homotopy group, second cohomology group
역사
메모
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
매스매티카 파일 및 계산 리소스
사전 형태의 자료
관련논문
- Buscaino, Brandon, Daniel DeBra, Peter W. Graham, Giorgio Gratta, and Timothy D. Wiser. “Testing Long-Distance Modifications of Gravity to 100 Astronomical Units.” arXiv:1508.06273 [astro-Ph, Physics:gr-Qc, Physics:hep-Ex, Physics:hep-Ph, Physics:hep-Th], August 25, 2015. http://arxiv.org/abs/1508.06273.