"Q-이항정리"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
10번째 줄: 10번째 줄:
  
 
*  이항정리 - 이항급수의 초기하급수 표현<br><math>(1-z)^{-a}=\sum_{n=0}^{\infty}\frac{(a)_n}{n!}z^n=\sum_{n=0}^{\infty}\frac{(a)_n(1)_n}{n!(1)_n}z^n=\,_2F_1(a,1;1;z)</math><br>
 
*  이항정리 - 이항급수의 초기하급수 표현<br><math>(1-z)^{-a}=\sum_{n=0}^{\infty}\frac{(a)_n}{n!}z^n=\sum_{n=0}^{\infty}\frac{(a)_n(1)_n}{n!(1)_n}z^n=\,_2F_1(a,1;1;z)</math><br>
*  q-이항정리<br><math>\sum_{n=0}^{\infty} \frac{(a;q)_n}{(q;q)_n}z^n=\sum_{n=0}^{\infty} \frac{(1-a)^q_n}{(1-q)^q_n}z^n=\frac{(az;q)_{\infty}}{(z;q)_{\infty}}=\prod_{n=0}^\infty  \frac {1-aq^n z}{1-q^n z}, |z|<1</math><br>[[Pochhammer 기호와 캐츠(Kac) 기호]] 참조<br>
+
*  q-이항정리<br><math>\sum_{n=0}^{\infty} \frac{(a;q)_n}{(q;q)_n}z^n=\sum_{n=0}^{\infty} \frac{(1-a)^q_n}{(1-q)^q_n}z^n=\frac{(az;q)_{\infty}}{(z;q)_{\infty}}=\prod_{n=0}^\infty  \frac {1-azq^n}{1-zq^n}, |z|<1</math><br>[[Pochhammer 기호와 캐츠(Kac) 기호]] 참조<br>
 
* [[q-초기하급수(q-hypergeometric series) (통합됨)|q-초기하급수(q-hypergeometric series)]]<br><math>_{1}\phi_0 \left[\begin{matrix} a  \\ - \end{matrix} ; q,z \right]</math><math>=\sum_{n=0}^\infty \frac {(a;q)_n} {(q;q)_n} z^n</math><br>
 
* [[q-초기하급수(q-hypergeometric series) (통합됨)|q-초기하급수(q-hypergeometric series)]]<br><math>_{1}\phi_0 \left[\begin{matrix} a  \\ - \end{matrix} ; q,z \right]</math><math>=\sum_{n=0}^\infty \frac {(a;q)_n} {(q;q)_n} z^n</math><br>
  
 
 
 
 
 +
 +
<h5 style="margin: 0px; line-height: 2em;">q-이항정리</h5>
  
 
 
 
 
45번째 줄: 47번째 줄:
 
<h5>관련된 항목들</h5>
 
<h5>관련된 항목들</h5>
  
*  
+
* [[q-초기하급수(q-hypergeometric series) (통합됨)|q-초기하급수(q-hypergeometric series)]]
  
 
 
 
 

2009년 12월 7일 (월) 19:01 판

이 항목의 스프링노트 원문주소

 

 

개요
  • 이항정리 - 이항급수의 초기하급수 표현
    \((1-z)^{-a}=\sum_{n=0}^{\infty}\frac{(a)_n}{n!}z^n=\sum_{n=0}^{\infty}\frac{(a)_n(1)_n}{n!(1)_n}z^n=\,_2F_1(a,1;1;z)\)
  • q-이항정리
    \(\sum_{n=0}^{\infty} \frac{(a;q)_n}{(q;q)_n}z^n=\sum_{n=0}^{\infty} \frac{(1-a)^q_n}{(1-q)^q_n}z^n=\frac{(az;q)_{\infty}}{(z;q)_{\infty}}=\prod_{n=0}^\infty \frac {1-azq^n}{1-zq^n}, |z|<1\)
    Pochhammer 기호와 캐츠(Kac) 기호 참조
  • q-초기하급수(q-hypergeometric series)
    \(_{1}\phi_0 \left[\begin{matrix} a \\ - \end{matrix} ; q,z \right]\)\(=\sum_{n=0}^\infty \frac {(a;q)_n} {(q;q)_n} z^n\)

 

q-이항정리

 

 

재미있는 사실

 

 

 

역사

 

 

메모

 

 

관련된 항목들

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

관련도서 및 추천도서

 

 

관련기사

 

 

블로그