"카탈란 수 (Catalan numbers)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
3번째 줄: 3번째 줄:
 
* 조합수학에서 빈번하게 등장하는 수열의 하나
 
* 조합수학에서 빈번하게 등장하는 수열의 하나
 
* (0,0)에서 (n,n)까지 격자점을 지나는 최단거리의 경로 중에서 직선 <math>y=x</math>를 넘지 않는 경우의 수
 
* (0,0)에서 (n,n)까지 격자점을 지나는 최단거리의 경로 중에서 직선 <math>y=x</math>를 넘지 않는 경우의 수
* <math>n\geq 0 </math>에 대하여 다음과 같이 주어짐:<math>c_n = \frac{1}{n+1}{2n\choose n} = \frac{(2n)!}{(n+1)!\,n!}</math><br>
+
* <math>n\geq 0 </math>에 대하여 다음과 같이 주어짐:<math>c_n = \frac{1}{n+1}{2n\choose n} = \frac{(2n)!}{(n+1)!\,n!}</math>
수열<br> 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, 343059613650, 1289904147324, 4861946401452, …<br>
+
*  1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012,…
  
 +
[[파일:카탈란 수열(Catalan numbers)1.png]]
 
 
 
 
  
11번째 줄: 12번째 줄:
  
 
==점화식==
 
==점화식==
 
+
* 다음의 점화식이 성립한다
* <math>c_{n+1}=c_0c_n+c_1c_{n-1}+\cdots+c_nc_0</math>
+
<math>c_{n+1}=c_0c_n+c_1c_{n-1}+\cdots+c_nc_0 \label{rec}</math>
  
 
 
 
 
19번째 줄: 20번째 줄:
  
 
==생성함수==
 
==생성함수==
 +
* 기본적인 내용에 대해서는  [[생성함수]] 항목을 참조
 +
* 카탈란 수열의 생성함수는 다음과 같이 주어짐
 +
:<math>G(x)= c_0 + c_1 x + c_2 x^2 + \cdots + c_n x^n + \cdots=\frac{1-\sqrt{1-4x}}{2x}</math>
  
* 기본적인 내용에 대해서는  [[생성함수]] 항목을 참조
+
===증명===
*  카탈란 수열의 생성함수는 다음과 같이 주어짐<br>''''''''''''<math>G(x)= c_0 + c_1 x + c_2 x^2 + \cdots + c_n x^n + \cdots=\frac{1-\sqrt{1-4x}}{2x}</math>''''''''''''<br> (증명)<br>''''''''''''<math>x G(x)^2= (c_0 + c_1 x + c_2 x^2 + \cdots + c_n x^n + \cdots)^2=c_0^2x+(c_0c_1+c_1c_0)x^2+(c_0c_2+c_1c_1+c_2c_0)x^3+\cdots=G(x)-1</math>'''''''''''':<math>x G(x)^2-G(x)+1=0</math><br> 따라서 ''''''''''''<math>G(x)= \frac{1-\sqrt{1-4x}}{2x}</math>'''''''''''' <br>
+
생성함수를 다음과 같이 두자
 +
$$G(x)= c_0 + c_1 x + c_2 x^2 + \cdots + c_n x^n + \cdots$$
 +
다음을 얻을 수 있다
 +
:<math>x G(x)^2= (c_0 + c_1 x + c_2 x^2 + \cdots + c_n x^n + \cdots)^2=c_0^2x+(c_0c_1+c_1c_0)x^2+(c_0c_2+c_1c_1+c_2c_0)x^3+\cdots=G(x)-1</math>
 +
여기에 \ref{rec} 을 이용하면,
 +
:<math>x G(x)^2-G(x)+1=0</math>
 +
따라서  
 +
:<math>G(x)= \frac{1-\sqrt{1-4x}}{2x}</math>■
  
 
 
 
 
154번째 줄: 165번째 줄:
 
 
 
 
  
 
 
  
==수학용어번역==
+
==매스매티카 파일 및 계산 리소스==
 
+
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
* http://www.google.com/dictionary?langpair=en|ko&q=
+
** https://oeis.org/A000108
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
 
 
 
 
  
 
 
 
 
171번째 줄: 176번째 줄:
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/Catalan_number
 
* http://en.wikipedia.org/wiki/Catalan_number
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
 
** https://oeis.org/A000108
 
 
 
 
 
 
 
 
==관련논문==
 
  
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://dx.doi.org/
 
  
 
 
 
 
189번째 줄: 184번째 줄:
 
==관련도서==
 
==관련도서==
  
* [http://www.amazon.com/exec/obidos/ASIN/019533454X/ref=nosim/addallbooksearch Catalan Numbers with Applications]<br>
+
* Thomas Koshy [http://www.amazon.com/exec/obidos/ASIN/019533454X/ref=nosim/addallbooksearch Catalan Numbers with Applications], Oxford University Press, USA, 2008
** Thomas Koshy, Oxford University Press, USA, 2008
+
 
*  도서내검색<br>
 
** http://books.google.com/books?q=Catalan+numbers
 
 
[[분류:조합수학]]
 
[[분류:조합수학]]

2013년 5월 8일 (수) 02:08 판

개요

  • 조합수학에서 빈번하게 등장하는 수열의 하나
  • (0,0)에서 (n,n)까지 격자점을 지나는 최단거리의 경로 중에서 직선 \(y=x\)를 넘지 않는 경우의 수
  • \(n\geq 0 \)에 대하여 다음과 같이 주어짐\[c_n = \frac{1}{n+1}{2n\choose n} = \frac{(2n)!}{(n+1)!\,n!}\]
  • 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012,…

카탈란 수열(Catalan numbers)1.png  

 

점화식

  • 다음의 점화식이 성립한다

\(c_{n+1}=c_0c_n+c_1c_{n-1}+\cdots+c_nc_0 \label{rec}\)

 

 

생성함수

  • 기본적인 내용에 대해서는  생성함수 항목을 참조
  • 카탈란 수열의 생성함수는 다음과 같이 주어짐

\[G(x)= c_0 + c_1 x + c_2 x^2 + \cdots + c_n x^n + \cdots=\frac{1-\sqrt{1-4x}}{2x}\]

증명

생성함수를 다음과 같이 두자 $$G(x)= c_0 + c_1 x + c_2 x^2 + \cdots + c_n x^n + \cdots$$ 다음을 얻을 수 있다 \[x G(x)^2= (c_0 + c_1 x + c_2 x^2 + \cdots + c_n x^n + \cdots)^2=c_0^2x+(c_0c_1+c_1c_0)x^2+(c_0c_2+c_1c_1+c_2c_0)x^3+\cdots=G(x)-1\] 여기에 \ref{rec} 을 이용하면, \[x G(x)^2-G(x)+1=0\] 따라서 \[G(x)= \frac{1-\sqrt{1-4x}}{2x}\]■

 

 

근사식

  • 스털링 공식 을 이용하여 다음을 증명할 수 있다\[C_{n}\sim \frac{4^{n}}{\sqrt{\pi n}(n+1)}(1-\frac{1}{8n})\]

 

 

격자경로와 카탈란 수

  • (0,0)에서 (n,n)까지 격자점을 지나는 최단거리의 경로
    '\({2n \choose n}\)'
  • (0,0)에서 (n,n)까지 격자점을 지나는 최단거리의 경로 중에서 직선 \(y=x\)를 넘지 않는 경우의 수

 

 

(0,0)에서 (n,n)까지 갈 수 있는 모든 방법의 수를 구한 다음,
그 중에서 y=x를 넘어서 가는 방법의 수를 빼면 된다. 이 방법의 수가 얼마가 되겠느냐를 구하는 과정에서 일대일대응이 등장한다.

 

일단계

 

(0,0)에서 (n,n)까지 갈 수 있는 모든 방법의 수를 구해 보자.
이것은 매우 간단한 문제인데, 일대일대응을 통하여 문제를 풀어보자.
각 경로에서 x축으로 움직이는 것을 X로 표시하고 y축으로 움직이는 것을 Y로 표시하면, 각 경로는 X와Y를 n개 씩 쓴 문자열로 표현된다. 이것이 일대일 대응이다. 각각의 경로는 서로 다른 문자열로 표현될테고, 문자열은 또한 어떤 경로를 표현할테니까 말이다.
따라서 죽 늘어놓은 2n개 중에서 n개를 골라 X라고 써 놓으면 나머지 위치는 Y가 될 것이고 결정될 것이고, 그런 방법의 수는 이다.
즉, (0,0)에서 (n,n)까지 갈 수 있는 모든 방법의 수는 이다.

 

이단계

 

이제 y=x를 넘어서서 가는 경로의 수를 구하자. 경로는 반드시 y=x+1과 만나게 될 것이다.

 


 

이 때, 이 경로의 (0,0)에서부터 y=x+1과 처음으로 만나는 점까지를 잘라서, y=x에 대칭시키자.

 


 

그리고 나머지 경로를 평행이동시켜 대칭이동된 경로에 갖다붙이자.

 


 

그 결과는 (0,0)에서 출발하여 (n+1,n-1)에 도착하는 경로일 것이다.

 


 

위에서 한 작업은 서로 다른 두 경로의 집합 사이에 어떤 대응을 만들어 낸 것이다. 이 대응은 일대일 대응이다.
일대일대응임을 보이기 위해서는 두 가지를 생각해야 한다. 첫번째는, 서로 다른 것으로 대응되었는지를 살피고, 두번째는 공역의 모든 원소가 대응되었는지를 살피는 것이다.

 

y=x를 넘어서서 가는 경로는 (0,0)에서 (n+1,n-1)까지 가는 경로와 일대일 대응되므로 그 개수는 \({2n \choose n+1}\)이다.

 

따라서 처음에 제기했던 문제의 답은 다음과 같다.

 \({2n \choose n}-{2n \choose n+1}=\frac{1}{n+1}{2n \choose n}\)

 


 

 

 

적분표현

  • \(c_n=\int_{0}^{1} 2^{2n+1}{\cos^{2n} \pi x}\, {\sin^2 \pi x}\,dx\)

 

 

 

재미있는 사실

 

 

 

역사

 

 

메모

 

 

관련된 항목들

 


매스매티카 파일 및 계산 리소스

 

사전 형태의 자료


 

 

관련도서