"양의 정부호 행렬(positive definite matrix)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
13번째 줄: 13번째 줄:
 
==2×2 행렬의 경우==
 
==2×2 행렬의 경우==
  
*  행렬:<math>\left( \begin{array}{cc}  a_{1,1} & a_{1,2} \\  a_{2,1} & a_{2,2} \end{array} \right)</math><br>
+
*  행렬:<math>\left( \begin{array}{cc}  a_{1,1} & a_{1,2} \\  a_{2,1} & a_{2,2} \end{array} \right)</math>
 
*  principal submatrix  
 
*  principal submatrix  
<math>\left( \begin{array}{c}  a_{1,1} \end{array} \right)</math>, <math>\left( \begin{array}{c}  a_{2,2} \end{array} \right)</math>, <math>\left( \begin{array}{cc}  a_{1,1} & a_{1,2} \\  a_{2,1} & a_{2,2} \end{array} \right)</math><br>
+
<math>\left( \begin{array}{c}  a_{1,1} \end{array} \right)</math>, <math>\left( \begin{array}{c}  a_{2,2} \end{array} \right)</math>, <math>\left( \begin{array}{cc}  a_{1,1} & a_{1,2} \\  a_{2,1} & a_{2,2} \end{array} \right)</math>
 
*  leading principal submatrix
 
*  leading principal submatrix
<math>\left( \begin{array}{c}  a_{1,1} \end{array} \right)</math>, <math>\left( \begin{array}{cc}  a_{1,1} & a_{1,2} \\  a_{2,1} & a_{2,2} \end{array} \right)</math><br>
+
<math>\left( \begin{array}{c}  a_{1,1} \end{array} \right)</math>, <math>\left( \begin{array}{cc}  a_{1,1} & a_{1,2} \\  a_{2,1} & a_{2,2} \end{array} \right)</math>
  
 
 
 
 
25번째 줄: 25번째 줄:
 
==3×3 행렬의 경우==
 
==3×3 행렬의 경우==
  
*  행렬:<math>\left( \begin{array}{ccc}  a_{1,1} & a_{1,2} & a_{1,3} \\  a_{2,1} & a_{2,2} & a_{2,3} \\  a_{3,1} & a_{3,2} & a_{3,3} \end{array} \right)</math><br>
+
*  행렬:<math>\left( \begin{array}{ccc}  a_{1,1} & a_{1,2} & a_{1,3} \\  a_{2,1} & a_{2,2} & a_{2,3} \\  a_{3,1} & a_{3,2} & a_{3,3} \end{array} \right)</math>
 
*  principal submatrix
 
*  principal submatrix
 
<math>\left( \begin{array}{c}  a_{1,1} \end{array} \right)</math>,<math>\left( \begin{array}{c}  a_{2,2} \end{array} \right)</math>,<math>\left( \begin{array}{c}  a_{3,3} \end{array} \right)</math>
 
<math>\left( \begin{array}{c}  a_{1,1} \end{array} \right)</math>,<math>\left( \begin{array}{c}  a_{2,2} \end{array} \right)</math>,<math>\left( \begin{array}{c}  a_{3,3} \end{array} \right)</math>
 
<math>\left( \begin{array}{cc}  a_{1,1} & a_{1,2} \\  a_{2,1} & a_{2,2} \end{array} \right)</math>, <math>\left( \begin{array}{cc}  a_{1,1} & a_{1,3} \\  a_{3,1} & a_{3,3} \end{array} \right)</math>, <math>\left( \begin{array}{cc}  a_{2,2} & a_{2,3} \\  a_{3,2} & a_{3,3} \end{array} \right)</math>
 
<math>\left( \begin{array}{cc}  a_{1,1} & a_{1,2} \\  a_{2,1} & a_{2,2} \end{array} \right)</math>, <math>\left( \begin{array}{cc}  a_{1,1} & a_{1,3} \\  a_{3,1} & a_{3,3} \end{array} \right)</math>, <math>\left( \begin{array}{cc}  a_{2,2} & a_{2,3} \\  a_{3,2} & a_{3,3} \end{array} \right)</math>
<math>\left( \begin{array}{ccc}  a_{1,1} & a_{1,2} & a_{1,3} \\  a_{2,1} & a_{2,2} & a_{2,3} \\  a_{3,1} & a_{3,2} & a_{3,3} \end{array} \right)</math><br>
+
<math>\left( \begin{array}{ccc}  a_{1,1} & a_{1,2} & a_{1,3} \\  a_{2,1} & a_{2,2} & a_{2,3} \\  a_{3,1} & a_{3,2} & a_{3,3} \end{array} \right)</math>
 
*  leading principal submatrix
 
*  leading principal submatrix
<math>\left( \begin{array}{c}  a_{1,1} \end{array} \right)</math><math>\left( \begin{array}{cc}  a_{1,1} & a_{1,2} \\  a_{2,1} & a_{2,2} \end{array} \right)</math>, <math>\left( \begin{array}{ccc}  a_{1,1} & a_{1,2} & a_{1,3} \\  a_{2,1} & a_{2,2} & a_{2,3} \\  a_{3,1} & a_{3,2} & a_{3,3} \end{array} \right)</math><br>
+
<math>\left( \begin{array}{c}  a_{1,1} \end{array} \right)</math><math>\left( \begin{array}{cc}  a_{1,1} & a_{1,2} \\  a_{2,1} & a_{2,2} \end{array} \right)</math>, <math>\left( \begin{array}{ccc}  a_{1,1} & a_{1,2} & a_{1,3} \\  a_{2,1} & a_{2,2} & a_{2,3} \\  a_{3,1} & a_{3,2} & a_{3,3} \end{array} \right)</math>
  
 
 
 
 
41번째 줄: 41번째 줄:
 
==예==
 
==예==
  
*  다음과 같은 5x5 행렬을 생각하자:<math>\left( \begin{array}{ccccc}  2 & -1 & 0 & 0 & 0 \\  -1 & 2 & -1 & 0 & 0 \\  0 & -1 & 2 & -1 & 0 \\  0 & 0 & -1 & 2 & -1 \\  0 & 0 & 0 & -1 & 1 \end{array} \right)</math><br>
+
*  다음과 같은 5x5 행렬을 생각하자:<math>\left( \begin{array}{ccccc}  2 & -1 & 0 & 0 & 0 \\  -1 & 2 & -1 & 0 & 0 \\  0 & -1 & 2 & -1 & 0 \\  0 & 0 & -1 & 2 & -1 \\  0 & 0 & 0 & -1 & 1 \end{array} \right)</math>
*  leading principal submatrix와 그 행렬식을 구하면 다음과 같다:<math>\begin{array}{ll}  \left( \begin{array}{c}  2 \end{array} \right) & 2 \\  \left( \begin{array}{cc}  2 & -1 \\  -1 & 2 \end{array} \right) & 3 \\  \left( \begin{array}{ccc}  2 & -1 & 0 \\  -1 & 2 & -1 \\  0 & -1 & 2 \end{array} \right) & 4 \\  \left( \begin{array}{cccc}  2 & -1 & 0 & 0 \\  -1 & 2 & -1 & 0 \\  0 & -1 & 2 & -1 \\  0 & 0 & -1 & 2 \end{array} \right) & 5 \\  \left( \begin{array}{ccccc}  2 & -1 & 0 & 0 & 0 \\  -1 & 2 & -1 & 0 & 0 \\  0 & -1 & 2 & -1 & 0 \\  0 & 0 & -1 & 2 & -1 \\  0 & 0 & 0 & -1 & 1 \end{array} \right) & 1 \end{array}</math><br>
+
*  leading principal submatrix와 그 행렬식을 구하면 다음과 같다:<math>\begin{array}{ll}  \left( \begin{array}{c}  2 \end{array} \right) & 2 \\  \left( \begin{array}{cc}  2 & -1 \\  -1 & 2 \end{array} \right) & 3 \\  \left( \begin{array}{ccc}  2 & -1 & 0 \\  -1 & 2 & -1 \\  0 & -1 & 2 \end{array} \right) & 4 \\  \left( \begin{array}{cccc}  2 & -1 & 0 & 0 \\  -1 & 2 & -1 & 0 \\  0 & -1 & 2 & -1 \\  0 & 0 & -1 & 2 \end{array} \right) & 5 \\  \left( \begin{array}{ccccc}  2 & -1 & 0 & 0 & 0 \\  -1 & 2 & -1 & 0 & 0 \\  0 & -1 & 2 & -1 & 0 \\  0 & 0 & -1 & 2 & -1 \\  0 & 0 & 0 & -1 & 1 \end{array} \right) & 1 \end{array}</math>
  
 
 
 
 
87번째 줄: 87번째 줄:
 
==수학용어번역==
 
==수학용어번역==
  
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
+
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=definite
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=definite
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=minor
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=minor

2020년 11월 13일 (금) 07:25 판

개요

  • 실계수 n×n 행렬 M이 모든 0이 아닌 벡터 v 에 대하여, \(v^{T}M v > 0 \) 를 만족시킬 때, 양의 정부호 행렬이라 한다
  • 실베스터 판정법 - leading principal minor 가 모두 양수이면 양의 정부호 행렬이다
  • 다변수함수의 극점을 분류하는 헤세 판정법 에 응용할 수 있다

 

 

 

2×2 행렬의 경우

  • 행렬\[\left( \begin{array}{cc} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{array} \right)\]
  • principal submatrix

\(\left( \begin{array}{c} a_{1,1} \end{array} \right)\), \(\left( \begin{array}{c} a_{2,2} \end{array} \right)\), \(\left( \begin{array}{cc} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{array} \right)\)

  • leading principal submatrix

\(\left( \begin{array}{c} a_{1,1} \end{array} \right)\), \(\left( \begin{array}{cc} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{array} \right)\)

 

 

3×3 행렬의 경우

  • 행렬\[\left( \begin{array}{ccc} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{array} \right)\]
  • principal submatrix

\(\left( \begin{array}{c} a_{1,1} \end{array} \right)\),\(\left( \begin{array}{c} a_{2,2} \end{array} \right)\),\(\left( \begin{array}{c} a_{3,3} \end{array} \right)\) \(\left( \begin{array}{cc} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{array} \right)\), \(\left( \begin{array}{cc} a_{1,1} & a_{1,3} \\ a_{3,1} & a_{3,3} \end{array} \right)\), \(\left( \begin{array}{cc} a_{2,2} & a_{2,3} \\ a_{3,2} & a_{3,3} \end{array} \right)\) \(\left( \begin{array}{ccc} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{array} \right)\)

  • leading principal submatrix

\(\left( \begin{array}{c} a_{1,1} \end{array} \right)\)\(\left( \begin{array}{cc} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{array} \right)\), \(\left( \begin{array}{ccc} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{array} \right)\)

 

 

 

  • 다음과 같은 5x5 행렬을 생각하자\[\left( \begin{array}{ccccc} 2 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & -1 & 1 \end{array} \right)\]
  • leading principal submatrix와 그 행렬식을 구하면 다음과 같다\[\begin{array}{ll} \left( \begin{array}{c} 2 \end{array} \right) & 2 \\ \left( \begin{array}{cc} 2 & -1 \\ -1 & 2 \end{array} \right) & 3 \\ \left( \begin{array}{ccc} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{array} \right) & 4 \\ \left( \begin{array}{cccc} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{array} \right) & 5 \\ \left( \begin{array}{ccccc} 2 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & -1 & 1 \end{array} \right) & 1 \end{array}\]

 

 

역사

 

 

 

메모

 

 

 

관련된 항목들

 

 

매스매티카 파일 및 계산 리소스

 

수학용어번역


 

 

사전 형태의 자료

 

리뷰논문, 에세이, 강의노트

 

 

 

관련논문

  • Gilbert, George T. 1991. “Positive Definite Matrices and Sylvester’s Criterion”. The American Mathematical Monthly 98 (1) (1월 1): 44-46. doi:10.2307/2324036.