"2차원 쌍곡기하학의 테셀레이션"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) |
||
17번째 줄: | 17번째 줄: | ||
** 코드 해설은 [http://www.amazon.com/Complex-Analysis-MATHEMATICA%C2%AE-William-Shaw/dp/0521836263 Complex analysis with Mathematica], Chapter 22. 참조 | ** 코드 해설은 [http://www.amazon.com/Complex-Analysis-MATHEMATICA%C2%AE-William-Shaw/dp/0521836263 Complex analysis with Mathematica], Chapter 22. 참조 | ||
[[분류:테셀레이션]] | [[분류:테셀레이션]] | ||
+ | [[분류:쌍곡기하학]] |
2013년 6월 8일 (토) 01:08 판
(2,3,7)-삼각형을 이용한 테셀레이션
- (2,3,7)이란 삼각형의 세 각이 각각 \(\frac{\pi}{7},\frac{\pi}{3},\frac{\pi}{2}\) 임을 의미
- 이 세각의 크기를 모두 더하면, 180도보다 작게 됨을 확인할 수 있다
\[\frac{\pi}{7}+\frac{\pi}{3}+\frac{\pi}{2}=\frac{41\pi}{42}\]
- 쌍곡기하학에서의 곡률은 음수이기 때문에 나타나는 현상이다
반전사상
- 반전 사상(inversion)은 푸앵카레 unit disk 모델에서, 모든 점들의 길이를 보존하는 등거리사상
- 따라서 아래의 그림에 있는 삼각형들은 쌍곡기하학의 관점에서 보면, 모두 그 크기와 모양이 똑같음.