"헤세 판정법"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
2번째 줄: 2번째 줄:
 
* 다변수함수의 임계점에서의 극소/극대 판정법
 
* 다변수함수의 임계점에서의 극소/극대 판정법
 
* 일변수함수의 임계점에서의 이계도함수를 이용한 극대/극소판정법의 다변수함수로의 일반화
 
* 일변수함수의 임계점에서의 이계도함수를 이용한 극대/극소판정법의 다변수함수로의 일반화
*  헤시안:<math>H(f) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1\,\partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1\,\partial x_n} \\  \\ \frac{\partial^2 f}{\partial x_2\,\partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2\,\partial x_n} \\  \\ \vdots & \vdots & \ddots & \vdots \\  \\ \frac{\partial^2 f}{\partial x_n\,\partial x_1} & \frac{\partial^2 f}{\partial x_n\,\partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}</math><br>
+
*  헤시안:<math>H(f) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1\,\partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1\,\partial x_n} \\  \\ \frac{\partial^2 f}{\partial x_2\,\partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2\,\partial x_n} \\  \\ \vdots & \vdots & \ddots & \vdots \\  \\ \frac{\partial^2 f}{\partial x_n\,\partial x_1} & \frac{\partial^2 f}{\partial x_n\,\partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}</math>
  
 
 
 
 
26번째 줄: 26번째 줄:
  
 
==메모==
 
==메모==
* [http://math.stanford.edu/%7Econrad/diffgeomPage/handouts/morselemma.pdf The Morse Lemma]<br>
+
* [http://math.stanford.edu/%7Econrad/diffgeomPage/handouts/morselemma.pdf The Morse Lemma]
 
** 브라이언 콘래드, 강의노트
 
** 브라이언 콘래드, 강의노트
 
* http://hilbertthm90.wordpress.com/2009/09/23/the-morse-lemma/
 
* http://hilbertthm90.wordpress.com/2009/09/23/the-morse-lemma/

2020년 11월 16일 (월) 06:45 판

개요

  • 다변수함수의 임계점에서의 극소/극대 판정법
  • 일변수함수의 임계점에서의 이계도함수를 이용한 극대/극소판정법의 다변수함수로의 일반화
  • 헤시안\[H(f) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1\,\partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1\,\partial x_n} \\ \\ \frac{\partial^2 f}{\partial x_2\,\partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2\,\partial x_n} \\ \\ \vdots & \vdots & \ddots & \vdots \\ \\ \frac{\partial^2 f}{\partial x_n\,\partial x_1} & \frac{\partial^2 f}{\partial x_n\,\partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}\]

 

 

이변수함수의 경우

  • \(D=f_{xx}f_{yy}-f_{xy}^2\)


 

역사

 

 

메모

 

 

관련된 항목들

 

 

사전 형태의 자료

 

 

관련논문

  • M. Morse The calculus of variations in the large,  Amer. Math. Soc.  (1934)