"조화다항식(harmonic polynomial)"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
Pythagoras0 (토론 | 기여)  | 
				Pythagoras0 (토론 | 기여)   | 
				||
| 2번째 줄: | 2번째 줄: | ||
* 아래에서는 세 변수의 경우를 다룸  | * 아래에서는 세 변수의 경우를 다룸  | ||
| − | * <math>P^{(l)}</math> : R^  | + | * <math>P^{(l)}</math> : $\mathbb{R}^3$에서 차수가 l인 [[동차다항식(Homogeneous polynomial)|동차다항식]]이 이루는 벡터공간  | 
| − | * [[라플라시안(Laplacian)]]  | + | * [[라플라시안(Laplacian)]] <math>\Delta : P^{(l)} \to P^{(l-2)}</math>를 다음과 같이 정의  | 
| − | * <math>\ker \Delta = H^{(l)}</math>   | + | :<math>\Delta f = \frac{\partial^2f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}+ \frac{\partial^2 f}{\partial z^2}</math>  | 
| + | * <math>\ker \Delta = H^{(l)}</math>의 원소를 $\mathbb{R}^3$의 $l$차 조화다항식이라 한다  | ||
* 조화다항식의 정의역을 단위구면 <math>S^2</math>에 제한할 때, [[구면조화함수(spherical harmonics)]] 를 얻는다  | * 조화다항식의 정의역을 단위구면 <math>S^2</math>에 제한할 때, [[구면조화함수(spherical harmonics)]] 를 얻는다  | ||
| 11번째 줄: | 12번째 줄: | ||
| − | ==예   | + | ==예==  | 
| + | ===2차 조화다항식===  | ||
| + | :<math>\begin{array}{l}  x^2-y^2 \\  x y \\  x z \\  y z \\  y^2-z^2 \end{array}</math>  | ||
| − | |||
| − | + | ===3차 조화다항식===  | |
| − | + | :<math>\begin{array}{l}  -3 x^2 z+z^3 \\  -x^2 y+y z^2 \\  -x^3+3 x z^2 \\  -x^2 z+y^2 z \\  x y z \\  -3 x^2 y+y^3 \\  -x^3+3 x y^2 \end{array}</math>  | |
| − | |||
| − | |||
| − | ==  | ||
| − | |||
| − | <math>\begin{array}{l}  -3 x^2 z+z^3 \\  -x^2 y+y z^2 \\  -x^3+3 x z^2 \\  -x^2 z+y^2 z \\  x y z \\  -3 x^2 y+y^3 \\  -x^3+3 x y^2 \end{array}</math>  | ||
2014년 1월 12일 (일) 20:38 판
개요
- 아래에서는 세 변수의 경우를 다룸
 - \(P^{(l)}\) : $\mathbb{R}^3$에서 차수가 l인 동차다항식이 이루는 벡터공간
 - 라플라시안(Laplacian) \(\Delta : P^{(l)} \to P^{(l-2)}\)를 다음과 같이 정의
 
\[\Delta f = \frac{\partial^2f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}+ \frac{\partial^2 f}{\partial z^2}\]
- \(\ker \Delta = H^{(l)}\)의 원소를 $\mathbb{R}^3$의 $l$차 조화다항식이라 한다
 - 조화다항식의 정의역을 단위구면 \(S^2\)에 제한할 때, 구면조화함수(spherical harmonics) 를 얻는다
 
예
2차 조화다항식
\[\begin{array}{l} x^2-y^2 \\ x y \\ x z \\ y z \\ y^2-z^2 \end{array}\]
3차 조화다항식
\[\begin{array}{l} -3 x^2 z+z^3 \\ -x^2 y+y z^2 \\ -x^3+3 x z^2 \\ -x^2 z+y^2 z \\ x y z \\ -3 x^2 y+y^3 \\ -x^3+3 x y^2 \end{array}\]
조화다항식과 구면조화함수
- 조화다항식을 단위구면에서 정의된 함수로 볼 때, 구면조화함수(spherical harmonics) 를 얻는다
 - 예
- 2차인 조화함수 \(-x^2+2 i x y+y^2\)
 - 단위구면 (구면좌표계 참조) \(x = \sin (\theta ) \cos (\phi ),y= \sin (\theta ) \sin (\phi ),z= \cos (\theta )\)
 - \(\sin ^2(\theta ) (-\cos (2 \phi )+i \sin (2 \phi ))=-e^{-2 i \phi } \sin ^2(\theta )\)는 \(Y_{2}^{-2}(\theta,\phi)\) 의 상수배이다
 
 - 2차인 조화함수 \(-x^2+2 i x y+y^2\)
 
역사
메모
- Math Overflow http://mathoverflow.net/search?q=
 
관련된 항목들