"유수 정리 (residue theorem)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) 잔글 (Pythagoras0 사용자가 유수정리(residue theorem) 문서를 유수 정리 (residue theorem) 문서로 옮겼습니다.) |
Pythagoras0 (토론 | 기여) |
||
1번째 줄: | 1번째 줄: | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==개요== | ==개요== | ||
− | + | * [[복소함수론]]의 주요 정리 중 하나 | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | * [[ | ||
− | |||
− | |||
− | |||
==응용== | ==응용== | ||
+ | * [[데데킨트 합]] | ||
+ | * [[왓슨 변환(Watson transform)]] | ||
− | + | :<math>\sum_{k=1}^{\infty}\frac{1}{k^{4}-a^4}=\frac{1}{2a^4}-\frac{\pi \cot (\pi a)}{4 a^3}-\frac{\pi \coth (\pi a)}{4 a^3}</math> | |
− | + | :<math>\sum_{n=-\infty}^{\infty}\frac{1}{n^2+n+1}=\frac{2\pi \tanh \left(\frac{\sqrt{3} \pi }{2}\right)}{\sqrt{3}}</math> | |
− | |||
− | |||
− | <math>\sum_{k=1}^{\infty}\frac{1}{k^{4}-a^4}=\frac{1}{2a^4}-\frac{\pi \cot (\pi a)}{4 a^3}-\frac{\pi \coth (\pi a)}{4 a^3}</math> | ||
− | |||
− | <math>\sum_{n=-\infty}^{\infty}\frac{1}{n^2+n+1}=\frac{2\pi \tanh \left(\frac{\sqrt{3} \pi }{2}\right)}{\sqrt{3}}</math> | ||
42번째 줄: | 17번째 줄: | ||
==역사== | ==역사== | ||
− | |||
− | |||
− | |||
* http://www.google.com/search?hl=en&tbs=tl:1&q= | * http://www.google.com/search?hl=en&tbs=tl:1&q= | ||
* [[수학사 연표]] | * [[수학사 연표]] | ||
− | |||
72번째 줄: | 43번째 줄: | ||
==수학용어번역== | ==수학용어번역== | ||
+ | * {{수학용어집|url=residue}} | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==사전 형태의 자료== | ==사전 형태의 자료== | ||
+ | * http://en.wikipedia.org/wiki/residue_theorem | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
[[분류:복소함수론]] | [[분류:복소함수론]] |
2014년 4월 13일 (일) 00:23 판
개요
- 복소함수론의 주요 정리 중 하나
응용
\[\sum_{k=1}^{\infty}\frac{1}{k^{4}-a^4}=\frac{1}{2a^4}-\frac{\pi \cot (\pi a)}{4 a^3}-\frac{\pi \coth (\pi a)}{4 a^3}\] \[\sum_{n=-\infty}^{\infty}\frac{1}{n^2+n+1}=\frac{2\pi \tanh \left(\frac{\sqrt{3} \pi }{2}\right)}{\sqrt{3}}\]
역사
메모
관련된 항목들
수학용어번역
- residue - 대한수학회 수학용어집