"평면 분할 (plane partitions)"의 두 판 사이의 차이
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) |
||
1번째 줄: | 1번째 줄: | ||
==개요== | ==개요== | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | ==평면분할의 예== | |
+ | ===2의 평면분할 목록=== | ||
+ | $$ | ||
+ | \left\{ \begin{array}{l} \{2\} \end{array} , \begin{array}{l} \{1,1\} \end{array} , \begin{array}{l} \{1\} \\ \{1\} \end{array} \right\} | ||
+ | $$ | ||
− | |||
− | + | ===3의 평면분할=== | |
+ | $$ | ||
+ | \left\{ \begin{array}{l} \{3\} \end{array} , \begin{array}{l} \{2,1\} \end{array} , \begin{array}{l} \{1,1,1\} \end{array} , \begin{array}{l} \{2\} \\ \{1\} \end{array} , \begin{array}{l} \{1,1\} \\ \{1\} \end{array} , \begin{array}{l} \{1\} \\ \{1\} \\ \{1\} \end{array} \right\} | ||
+ | $$ | ||
− | == | + | ===4의 평면분할=== |
+ | $$ | ||
+ | \left\{ | ||
+ | \begin{array}{c} | ||
+ | \{4\} \\ | ||
+ | \end{array} | ||
+ | , | ||
+ | \begin{array}{c} | ||
+ | \{2,2\} \\ | ||
+ | \end{array} | ||
+ | , | ||
+ | \begin{array}{c} | ||
+ | \{3,1\} \\ | ||
+ | \end{array} | ||
+ | , | ||
+ | \begin{array}{c} | ||
+ | \{2,1,1\} \\ | ||
+ | \end{array} | ||
+ | , | ||
+ | \begin{array}{c} | ||
+ | \{1,1,1,1\} \\ | ||
+ | \end{array} | ||
+ | , | ||
+ | \begin{array}{c} | ||
+ | \{2\} \\ | ||
+ | \{2\} \\ | ||
+ | \end{array} | ||
+ | , | ||
+ | \begin{array}{c} | ||
+ | \{3\} \\ | ||
+ | \{1\} \\ | ||
+ | \end{array} | ||
+ | , | ||
+ | \begin{array}{c} | ||
+ | \{1,1\} \\ | ||
+ | \{1,1\} \\ | ||
+ | \end{array} | ||
+ | , | ||
+ | \begin{array}{c} | ||
+ | \{2,1\} \\ | ||
+ | \{1\} \\ | ||
+ | \end{array} | ||
+ | , | ||
+ | \begin{array}{c} | ||
+ | \{1,1,1\} \\ | ||
+ | \{1\} \\ | ||
+ | \end{array} | ||
+ | , | ||
+ | \begin{array}{c} | ||
+ | \{2\} \\ | ||
+ | \{1\} \\ | ||
+ | \{1\} \\ | ||
+ | \end{array} | ||
+ | , | ||
+ | \begin{array}{c} | ||
+ | \{1,1\} \\ | ||
+ | \{1\} \\ | ||
+ | \{1\} \\ | ||
+ | \end{array} | ||
+ | , | ||
+ | \begin{array}{c} | ||
+ | \{1\} \\ | ||
+ | \{1\} \\ | ||
+ | \{1\} \\ | ||
+ | \{1\} \\ | ||
+ | \end{array} | ||
+ | \right\} | ||
+ | $$ | ||
− | |||
− | |||
− | |||
+ | ==생성함수== | ||
+ | * 다음과 같이 무한곱으로 표현가능하다 | ||
+ | :<math> | ||
+ | \begin{aligned} | ||
+ | \sum_{\pi:\text{plane partitions}}q^{|\pi|} & = \prod_{n=1}^\infty \frac {1}{(1-q^n)^n} \\ | ||
+ | & =1 + q + 3 q^2 + 6 q^3 + 13 q^4 + 24 q^5 + 48 q^6 + 86 q^7 + 160 q^8 + | ||
+ | 282 q^9 + 500 q^10+\cdots | ||
+ | \end{aligned} | ||
+ | </math> | ||
57번째 줄: | 129번째 줄: | ||
==사전 형태의 자료== | ==사전 형태의 자료== | ||
− | |||
* http://en.wikipedia.org/wiki/Plane_partition | * http://en.wikipedia.org/wiki/Plane_partition | ||
2014년 9월 18일 (목) 01:03 판
개요
평면분할의 예
2의 평면분할 목록
$$ \left\{ \begin{array}{l} \{2\} \end{array} , \begin{array}{l} \{1,1\} \end{array} , \begin{array}{l} \{1\} \\ \{1\} \end{array} \right\} $$
3의 평면분할
$$ \left\{ \begin{array}{l} \{3\} \end{array} , \begin{array}{l} \{2,1\} \end{array} , \begin{array}{l} \{1,1,1\} \end{array} , \begin{array}{l} \{2\} \\ \{1\} \end{array} , \begin{array}{l} \{1,1\} \\ \{1\} \end{array} , \begin{array}{l} \{1\} \\ \{1\} \\ \{1\} \end{array} \right\} $$
4의 평면분할
$$ \left\{ \begin{array}{c} \{4\} \\ \end{array} , \begin{array}{c} \{2,2\} \\ \end{array} , \begin{array}{c} \{3,1\} \\ \end{array} , \begin{array}{c} \{2,1,1\} \\ \end{array} , \begin{array}{c} \{1,1,1,1\} \\ \end{array} , \begin{array}{c} \{2\} \\ \{2\} \\ \end{array} , \begin{array}{c} \{3\} \\ \{1\} \\ \end{array} , \begin{array}{c} \{1,1\} \\ \{1,1\} \\ \end{array} , \begin{array}{c} \{2,1\} \\ \{1\} \\ \end{array} , \begin{array}{c} \{1,1,1\} \\ \{1\} \\ \end{array} , \begin{array}{c} \{2\} \\ \{1\} \\ \{1\} \\ \end{array} , \begin{array}{c} \{1,1\} \\ \{1\} \\ \{1\} \\ \end{array} , \begin{array}{c} \{1\} \\ \{1\} \\ \{1\} \\ \{1\} \\ \end{array} \right\} $$
생성함수
- 다음과 같이 무한곱으로 표현가능하다
\[ \begin{aligned} \sum_{\pi:\text{plane partitions}}q^{|\pi|} & = \prod_{n=1}^\infty \frac {1}{(1-q^n)^n} \\ & =1 + q + 3 q^2 + 6 q^3 + 13 q^4 + 24 q^5 + 48 q^6 + 86 q^7 + 160 q^8 + 282 q^9 + 500 q^10+\cdots \end{aligned} \]
역사
메모
관련된 항목들
매스매티카 파일 및 계산 리소스
사전 형태의 자료
관련논문
- Destainville, Nicolas, and Suresh Govindarajan. 2014. “Estimating the Asymptotics of Solid Partitions.” arXiv:1406.5605 [cond-Mat, Physics:hep-Th], June. http://arxiv.org/abs/1406.5605.