"24차원 짝수 자기쌍대 격자"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
15번째 줄: 15번째 줄:
  
 
==관련논문==
 
==관련논문==
 +
* Nebe, Gabriele, and Boris Venkov. On Siegel Modular Forms of Weight 12. http://www.math.rwth-aachen.de/~Gabriele.Nebe/papers/Siemod12.pdf
 +
* Borcherds, Richard E., Eberhard Freitag, and Rainer Weissauer. "A Siegel cusp form of degree 12 and weight 12." Journal fur die Reine und Angewandte Mathematik (1998): 141-153.
 
* Erokhin, V. A. “Theta-Series of Even Unimodular Lattices.” Journal of Soviet Mathematics 25, no. 2 (April 1, 1984): 1012–20. doi:10.1007/BF01680824.
 
* Erokhin, V. A. “Theta-Series of Even Unimodular Lattices.” Journal of Soviet Mathematics 25, no. 2 (April 1, 1984): 1012–20. doi:10.1007/BF01680824.
 
* Erokhin, V. A. “Theta-Series of Even Unimodular 24-Dimensional Lattices.” Journal of Soviet Mathematics 17, no. 4 (November 1, 1981): 1999–2008. doi:10.1007/BF01465457.
 
* Erokhin, V. A. “Theta-Series of Even Unimodular 24-Dimensional Lattices.” Journal of Soviet Mathematics 17, no. 4 (November 1, 1981): 1999–2008. doi:10.1007/BF01465457.

2014년 6월 27일 (금) 19:34 판

개요

  • $\Gamma\subset \mathbb{R}^{24}$가 짝수 unimodular 격자라 하자
  • 루트로 생성되는 격자 $(\Gamma_2)_{\mathbb{Z}}$는 다음과 같은 24가지 경우만이 가능하다

$$ \begin{aligned} \emptyset &, & A_1^{24} &, & A_2^{12}&,& A_3^8&,& A_4^6&,& A_5^4D_4&,& D_4^6&,&A_6^4\\ A_7^2D_5^2&,&A_8^3&,&A_9^2D_6&,& D_6^4 &,& E_6^4&,&A_{11}D_7E_6&,&A_{12}^2&,&D_8^3 \\ A_{15}D_9 &,& A_{17}E_7&,&D_{10}E_7^2&,&D_{12}^2&,& A_{24}&,&D_{16}E_8&,& E_8^3&,&D_{24} \end{aligned} $$


관련된 항목들


관련논문

  • Nebe, Gabriele, and Boris Venkov. On Siegel Modular Forms of Weight 12. http://www.math.rwth-aachen.de/~Gabriele.Nebe/papers/Siemod12.pdf
  • Borcherds, Richard E., Eberhard Freitag, and Rainer Weissauer. "A Siegel cusp form of degree 12 and weight 12." Journal fur die Reine und Angewandte Mathematik (1998): 141-153.
  • Erokhin, V. A. “Theta-Series of Even Unimodular Lattices.” Journal of Soviet Mathematics 25, no. 2 (April 1, 1984): 1012–20. doi:10.1007/BF01680824.
  • Erokhin, V. A. “Theta-Series of Even Unimodular 24-Dimensional Lattices.” Journal of Soviet Mathematics 17, no. 4 (November 1, 1981): 1999–2008. doi:10.1007/BF01465457.