"슈르 다항식(Schur polynomial)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
74번째 줄: 74번째 줄:
  
 
==The first Giambelli formula (Jacobi-Trudy 항등식)==
 
==The first Giambelli formula (Jacobi-Trudy 항등식)==
 
 
* 슈르 다항식은 [[완전 동차 대칭 다항식 (complete homogeneous symmetric polynomial)]]의 다항식으로 표현할 수 있다
 
* 슈르 다항식은 [[완전 동차 대칭 다항식 (complete homogeneous symmetric polynomial)]]의 다항식으로 표현할 수 있다
* <math>s_{\lambda} = \operatorname{det}(h_{\lambda_{i}-i+j})</math>
+
;정리 (자코비-트루디)
*  변수가 3인 경우의 complete homogeneous polynomial은 다음과 같다 :<math>\left( \begin{array}{cc}  h_1 & x_1+x_2+x_3 \\  h_2 & x_1^2+x_1 x_2+x_2^2+x_1 x_3+x_2 x_3+x_3^2 \\  h_3 & x_1^3+x_1^2 x_2+x_1 x_2^2+x_2^3+x_1^2 x_3+x_1 x_2 x_3+x_2^2 x_3+x_1 x_3^2+x_2 x_3^2+x_3^3 \\  h_4 & x_1^4+x_1^3 x_2+x_1^2 x_2^2+x_1 x_2^3+x_2^4+x_1^3 x_3+x_1^2 x_2 x_3+x_1 x_2^2 x_3+x_2^3 x_3+x_1^2 x_3^2+x_1 x_2 x_3^2+x_2^2 x_3^2+x_1 x_3^3+x_2 x_3^3+x_3^4 \end{array} \right)</math><br>
+
<math>s_{\lambda} = \operatorname{det}(h_{\lambda_{i}-i+j})</math>
* 예. :<math>s_{(2,1,1)}(x_1,x_2,x_3)=h_1^2 h_2-h_2^2-h_1 h_3+h_4</math>
+
===예===
 +
*  변수가 3인 경우의 complete homogeneous polynomial은 다음과 같다
 +
:<math>\left( \begin{array}{cc}  h_1 & x_1+x_2+x_3 \\  h_2 & x_1^2+x_1 x_2+x_2^2+x_1 x_3+x_2 x_3+x_3^2 \\  h_3 & x_1^3+x_1^2 x_2+x_1 x_2^2+x_2^3+x_1^2 x_3+x_1 x_2 x_3+x_2^2 x_3+x_1 x_3^2+x_2 x_3^2+x_3^3 \\  h_4 & x_1^4+x_1^3 x_2+x_1^2 x_2^2+x_1 x_2^3+x_2^4+x_1^3 x_3+x_1^2 x_2 x_3+x_1 x_2^2 x_3+x_2^3 x_3+x_1^2 x_3^2+x_1 x_2 x_3^2+x_2^2 x_3^2+x_1 x_3^3+x_2 x_3^3+x_3^4 \end{array} \right)</math><br>
 +
* 예 :<math>s_{(2,1,1)}(x_1,x_2,x_3)=\left(
 +
\begin{array}{ccc}
 +
h_2 & h_3 & h_4 \\
 +
1 & h_1 & h_2 \\
 +
0 & 1 & h_1 \\
 +
\end{array}
 +
\right)=h_1^2 h_2-h_2^2-h_1 h_3+h_4</math>
  
 
 
 
 

2014년 9월 18일 (목) 16:45 판

개요


정의

  • 변수의 개수 n과 d의 (0을 허용하며, 크기가 n인) 분할(partition)이 \(\lambda\)가 주어지면 d차 다항식 \( s_\lambda(x_1,\ldots,x_n)\) 이 결정된다
  • 다음과 같은 두 개의 분할을 생각하자
    • \(\rho : n-1,n-2,\cdots, 0\)
    • d의 (크기가 n인) 분할 \[\lambda: \lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n\geq 0\]
  • 다음과 같이 $n\times n$ 행렬의 행렬식으로 두 다항식을 정의하자

\[a_{\lambda+\rho}=\operatorname{det}(x_{i}^{\lambda_{j}+n-j})_{1\le i,j\le n}\] \[a_{\rho}=\operatorname{det}(x_{i}^{n-j})_{1\le i,j\le n}\label{van}\]

 

변수의 개수가 2이고, 4의 분할인 경우

\begin{array}{c|c} \lambda & s_{\lambda } \\ \hline \{4\} & x_1^4+x_1^3 x_2+x_1^2 x_2^2+x_1 x_2^3+x_2^4 \\ \{3,1\} & x_1^3 x_2+x_1^2 x_2^2+x_1 x_2^3 \\ \{2,2\} & x_1^2 x_2^2 \\ \{2,1,1\} & 0 \\ \{1,1,1,1\} & 0 \end{array}

변수의 개수가 3이고, 4의 분할인 경우

\begin{array}{c|c} \lambda & s_{\lambda } \\ \hline \{4\} & x_1^4+x_1^3 x_2+x_1^2 x_2^2+x_1 x_2^3+x_2^4+x_1^3 x_3+x_1^2 x_2 x_3+x_1 x_2^2 x_3+x_2^3 x_3+x_1^2 x_3^2+x_1 x_2 x_3^2+x_2^2 x_3^2+x_1 x_3^3+x_2 x_3^3+x_3^4 \\ \{3,1\} & x_1^3 x_2+x_1^2 x_2^2+x_1 x_2^3+x_1^3 x_3+2 x_1^2 x_2 x_3+2 x_1 x_2^2 x_3+x_2^3 x_3+x_1^2 x_3^2+2 x_1 x_2 x_3^2+x_2^2 x_3^2+x_1 x_3^3+x_2 x_3^3 \\ \{2,2\} & x_1^2 x_2^2+x_1^2 x_2 x_3+x_1 x_2^2 x_3+x_1^2 x_3^2+x_1 x_2 x_3^2+x_2^2 x_3^2 \\ \{2,1,1\} & x_1^2 x_2 x_3+x_1 x_2^2 x_3+x_1 x_2 x_3^2 \\ \{1,1,1,1\} & 0 \end{array}  

 

 

영 태블로

\[s_\lambda(x_1,\ldots,x_n) = \sum_T w(T)\] 여기서 T는 λ 형태의 준표준 영 태블로

  • 예 $n=3$, $\lambda=(2,1,1)$의 경우, $s_{\lambda}(x_1,x_2,x_3)=x_1^2 x_2 x_3+x_1 x_2^2 x_3+x_1 x_2 x_3^2$

\begin{array}{cc} \boxed{1} & \boxed{1} \\ \boxed{2} & {} \\ \boxed{3} & {} \\ \end{array}

\begin{array}{cc} \boxed{1} & \boxed{2} \\ \boxed{2} & {} \\ \boxed{3} & {} \\ \end{array}


\begin{array}{cc} \boxed{1} & \boxed{3} \\ \boxed{2} & {} \\ \boxed{3} & {} \\ \end{array}


The first Giambelli formula (Jacobi-Trudy 항등식)

정리 (자코비-트루디)

\(s_{\lambda} = \operatorname{det}(h_{\lambda_{i}-i+j})\)

  • 변수가 3인 경우의 complete homogeneous polynomial은 다음과 같다

\[\left( \begin{array}{cc} h_1 & x_1+x_2+x_3 \\ h_2 & x_1^2+x_1 x_2+x_2^2+x_1 x_3+x_2 x_3+x_3^2 \\ h_3 & x_1^3+x_1^2 x_2+x_1 x_2^2+x_2^3+x_1^2 x_3+x_1 x_2 x_3+x_2^2 x_3+x_1 x_3^2+x_2 x_3^2+x_3^3 \\ h_4 & x_1^4+x_1^3 x_2+x_1^2 x_2^2+x_1 x_2^3+x_2^4+x_1^3 x_3+x_1^2 x_2 x_3+x_1 x_2^2 x_3+x_2^3 x_3+x_1^2 x_3^2+x_1 x_2 x_3^2+x_2^2 x_3^2+x_1 x_3^3+x_2 x_3^3+x_3^4 \end{array} \right)\]

  • 예 \[s_{(2,1,1)}(x_1,x_2,x_3)=\left( \begin{array}{ccc} h_2 & h_3 & h_4 \\ 1 & h_1 & h_2 \\ 0 & 1 & h_1 \\ \end{array} \right)=h_1^2 h_2-h_2^2-h_1 h_3+h_4\]

 

코쉬 항등식

역사

 

 

메모


 

관련된 항목들

 

매스매티카 파일 및 계산 리소스


 

수학용어번역

  • 표준, standard - 대한수학회 수학용어집
  • 준,반, semi - 대한수학회 수학용어집

 

 

 

사전 형태의 자료


 

리뷰논문, 에세이, 강의노트


관련논문

  • Proctor, Robert A. 1989. “Equivalence of the Combinatorial and the Classical Definitions of Schur Functions.” Journal of Combinatorial Theory, Series A 51 (1) (May): 135–137. doi:10.1016/0097-3165(89)90086-1.
  • I. Gessel and X. Viennot, Determinants, paths, and plane partitions, Preprint, 1988 http://people.brandeis.edu/~gessel/homepage/papers/pp.pdf