"호인 미분방정식(Heun's equation)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) (→관련논문) |
||
22번째 줄: | 22번째 줄: | ||
+ | |||
+ | ==리뷰, 에세이, 강의노트== | ||
+ | * Fiziev, P. P. “The Heun Functions as a Modern Powerful Tool for Research in Different Scientific Domains.” arXiv:1512.04025 [math-Ph], December 13, 2015. http://arxiv.org/abs/1512.04025. | ||
+ | |||
+ | |||
==관련논문== | ==관련논문== | ||
* Fiziev, Plamen P. “Novel Representation of the General Heun’s Functions. Back to the Beginning.” arXiv:1409.8385 [math], September 30, 2014. http://arxiv.org/abs/1409.8385. | * Fiziev, Plamen P. “Novel Representation of the General Heun’s Functions. Back to the Beginning.” arXiv:1409.8385 [math], September 30, 2014. http://arxiv.org/abs/1409.8385. | ||
− | * [http://dx.doi.org/10.1090/S0025-5718-06-01939-9 The 192 solutions of the Heun equation] | + | * Robert S. Maier, [http://dx.doi.org/10.1090/S0025-5718-06-01939-9 The 192 solutions of the Heun equation], Journal: Math. Comp. 76 (2007), 811-843 |
− | |||
[[분류:미분방정식]] | [[분류:미분방정식]] |
2015년 12월 19일 (토) 00:01 판
개요
- 리만구면 상의 네 점 \(0,1,d, \infty\)에서 정규특이점을 갖는 미분방정식
\[\frac {d^2w}{dz^2} + \left[\frac{\gamma}{z}+ \frac{\delta}{z-1} + \frac{\epsilon}{z-d} \right] \frac {dw}{dz} + \frac {\alpha \beta z -q} {z(z-1)(z-d)} w = 0\] 여기서 \(\epsilon=\alpha+\beta-\gamma-\delta+1\)을 만족시킴(\(z=\infty\)에서의 정규성에 필요)
메모
관련된 항목들
사전 형태의 자료
리뷰, 에세이, 강의노트
- Fiziev, P. P. “The Heun Functions as a Modern Powerful Tool for Research in Different Scientific Domains.” arXiv:1512.04025 [math-Ph], December 13, 2015. http://arxiv.org/abs/1512.04025.
관련논문
- Fiziev, Plamen P. “Novel Representation of the General Heun’s Functions. Back to the Beginning.” arXiv:1409.8385 [math], September 30, 2014. http://arxiv.org/abs/1409.8385.
- Robert S. Maier, The 192 solutions of the Heun equation, Journal: Math. Comp. 76 (2007), 811-843