"호프스태터의 나비"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
6번째 줄: 6번째 줄:
  
 
==관련논문==
 
==관련논문==
 +
* Strohmer, Thomas, and Tim Wertz. “Almost Eigenvalues and Eigenvectors of Almost Mathieu Operators.” arXiv:1501.06001 [math], January 23, 2015. http://arxiv.org/abs/1501.06001.
 
* Wang, Yiqian, and Zhenghe Zhang. “Cantor Spectrum for a Class of $C^2$ Quasiperiodic Schr"odinger Operators.” arXiv:1410.0101 [math], September 30, 2014. http://arxiv.org/abs/1410.0101.
 
* Wang, Yiqian, and Zhenghe Zhang. “Cantor Spectrum for a Class of $C^2$ Quasiperiodic Schr"odinger Operators.” arXiv:1410.0101 [math], September 30, 2014. http://arxiv.org/abs/1410.0101.
 
* Geisler, M. C., J. H. Smet, V. Umansky, K. von Klitzing, B. Naundorf, R. Ketzmerick, and H. Schweizer. “Detection of a Landau Band-Coupling-Induced Rearrangement of the Hofstadter Butterfly.” Physical Review Letters 92, no. 25 (June 22, 2004): 256801. doi:10.1103/PhysRevLett.92.256801.
 
* Geisler, M. C., J. H. Smet, V. Umansky, K. von Klitzing, B. Naundorf, R. Ketzmerick, and H. Schweizer. “Detection of a Landau Band-Coupling-Induced Rearrangement of the Hofstadter Butterfly.” Physical Review Letters 92, no. 25 (June 22, 2004): 256801. doi:10.1103/PhysRevLett.92.256801.

2015년 1월 27일 (화) 04:39 판

메모


관련논문

  • Strohmer, Thomas, and Tim Wertz. “Almost Eigenvalues and Eigenvectors of Almost Mathieu Operators.” arXiv:1501.06001 [math], January 23, 2015. http://arxiv.org/abs/1501.06001.
  • Wang, Yiqian, and Zhenghe Zhang. “Cantor Spectrum for a Class of $C^2$ Quasiperiodic Schr"odinger Operators.” arXiv:1410.0101 [math], September 30, 2014. http://arxiv.org/abs/1410.0101.
  • Geisler, M. C., J. H. Smet, V. Umansky, K. von Klitzing, B. Naundorf, R. Ketzmerick, and H. Schweizer. “Detection of a Landau Band-Coupling-Induced Rearrangement of the Hofstadter Butterfly.” Physical Review Letters 92, no. 25 (June 22, 2004): 256801. doi:10.1103/PhysRevLett.92.256801.