"고전 케플러-쿨롱 시스템"의 두 판 사이의 차이
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) |
||
1번째 줄: | 1번째 줄: | ||
+ | ==개요== | ||
+ | * 행성운동을 기술하는 해밀토니안 시스템 | ||
+ | * [[고전역학에서의 적분가능 모형]]의 예 | ||
+ | * $\mathbf{p}=(p_1,p_2,p_3), \mathbf{q}=(q_1,q_2,q_3)$ | ||
+ | * 해밀토니안은 다음과 같이 주어진다 | ||
+ | $$ | ||
+ | H_0(\mathbf{q},\mathbf{p})=\frac{1}{2}p^2-\frac{1}{q}=\frac{1}{2} \left(p_1^2+p_2^2+p_3^2\right)-\frac{1}{\sqrt{q_1^2+q_2^2+q_3^2}} | ||
+ | $$ | ||
+ | 여기서 $p=|\mathbf{p}|,q=|\mathbf{q}|$ | ||
+ | * 보존량 | ||
+ | $$ | ||
+ | \begin{aligned} | ||
+ | H_0 &=\frac{1}{2} \left(p_1^2+p_2^2+p_3^2\right)-\frac{1}{\sqrt{q_1^2+q_2^2+q_3^2}} \\ | ||
+ | \mathbf{G}&=\mathbf{q}\times \mathbf{p}=(p_3 q_2-p_2 q_3,p_1 q_3-p_3 q_1,p_2 q_1-p_1 q_2) \\ | ||
+ | \mathbf{E}&=\mathbf{p}\times \mathbf{G}-\frac{\mathbf{q}}{q}\\ | ||
+ | &=(p_2^2 q_1-p_1 p_2 q_2+p_3^2 q_1-p_1 p_3 q_3-\frac{q_1}{\sqrt{q_1^2+q_2^2+q_3^2}},p_1^2 q_2-p_2 p_1 q_1+p_3^2 q_2-p_2 p_3 q_3-\frac{q_2}{\sqrt{q_1^2+q_2^2+q_3^2}},p_1^2 q_3-p_3 p_1 q_1-p_2 p_3 q_2+p_2^2 q_3-\frac{q_3}{\sqrt{q_1^2+q_2^2+q_3^2}}) | ||
+ | \end{aligned} | ||
+ | $$ | ||
+ | * 보존량 사이에 다음의 관계가 성립한다 | ||
+ | $$ | ||
+ | \mathbf{G}\cdot\mathbf{E}=0 \\ | ||
+ | E^2-1=2H_0G^2 | ||
+ | $$ | ||
+ | |||
+ | |||
==메모== | ==메모== | ||
− | * $\vec{A} = \left(p \times L\right) - m k\cdot \frac{\ | + | * $\vec{A} = \left(p \times L\right) - m k\cdot \frac{\mathbf{r}}{r}$ |
* http://physics.stackexchange.com/questions/tagged/runge-lenz-vector | * http://physics.stackexchange.com/questions/tagged/runge-lenz-vector | ||
* http://analyticphysics.com/Runge%20Vector/The%20Symmetry%20Corresponding%20to%20the%20Runge%20Vector.htm | * http://analyticphysics.com/Runge%20Vector/The%20Symmetry%20Corresponding%20to%20the%20Runge%20Vector.htm |
2014년 10월 16일 (목) 21:47 판
개요
- 행성운동을 기술하는 해밀토니안 시스템
- 고전역학에서의 적분가능 모형의 예
- $\mathbf{p}=(p_1,p_2,p_3), \mathbf{q}=(q_1,q_2,q_3)$
- 해밀토니안은 다음과 같이 주어진다
$$ H_0(\mathbf{q},\mathbf{p})=\frac{1}{2}p^2-\frac{1}{q}=\frac{1}{2} \left(p_1^2+p_2^2+p_3^2\right)-\frac{1}{\sqrt{q_1^2+q_2^2+q_3^2}} $$ 여기서 $p=|\mathbf{p}|,q=|\mathbf{q}|$
- 보존량
$$ \begin{aligned} H_0 &=\frac{1}{2} \left(p_1^2+p_2^2+p_3^2\right)-\frac{1}{\sqrt{q_1^2+q_2^2+q_3^2}} \\ \mathbf{G}&=\mathbf{q}\times \mathbf{p}=(p_3 q_2-p_2 q_3,p_1 q_3-p_3 q_1,p_2 q_1-p_1 q_2) \\ \mathbf{E}&=\mathbf{p}\times \mathbf{G}-\frac{\mathbf{q}}{q}\\ &=(p_2^2 q_1-p_1 p_2 q_2+p_3^2 q_1-p_1 p_3 q_3-\frac{q_1}{\sqrt{q_1^2+q_2^2+q_3^2}},p_1^2 q_2-p_2 p_1 q_1+p_3^2 q_2-p_2 p_3 q_3-\frac{q_2}{\sqrt{q_1^2+q_2^2+q_3^2}},p_1^2 q_3-p_3 p_1 q_1-p_2 p_3 q_2+p_2^2 q_3-\frac{q_3}{\sqrt{q_1^2+q_2^2+q_3^2}}) \end{aligned} $$
- 보존량 사이에 다음의 관계가 성립한다
$$ \mathbf{G}\cdot\mathbf{E}=0 \\ E^2-1=2H_0G^2 $$
메모
- $\vec{A} = \left(p \times L\right) - m k\cdot \frac{\mathbf{r}}{r}$
- http://physics.stackexchange.com/questions/tagged/runge-lenz-vector
- http://analyticphysics.com/Runge%20Vector/The%20Symmetry%20Corresponding%20to%20the%20Runge%20Vector.htm
리뷰, 에세이, 강의노트
- The symmetries of the Kepler problem
- Cordani, Bruno. ‘The Kepler Problem’. In Geography of Order and Chaos in Mechanics, 175–209. Progress in Mathematical Physics 64. Springer New York, 2013. http://link.springer.com.ezproxy.library.uq.edu.au/chapter/10.1007/978-0-8176-8370-2_6.