"셀베르그 적분(Selberg integral)"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
Pythagoras0 (토론 | 기여)  (→관련논문)  | 
				Pythagoras0 (토론 | 기여)   | 
				||
| 52번째 줄: | 52번째 줄: | ||
==리뷰, 에세이, 강의노트==  | ==리뷰, 에세이, 강의노트==  | ||
| − | *   | + | * Warnaar, [http://www.maths.adelaide.edu.au/thomas.leistner/colloquium/20110805OleWarnaar/Selberg.pdf The Selberg Integral], 2011  | 
| − | *   | + | * Warnaar, [http://www.maths.uq.edu.au/~uqowarna/talks/FPSAC08.pdf The Mukhin{Varchenko conjecture for type A], 2008  | 
| + | * Warnaar, [http://www.maths.uq.edu.au/%7Euqowarna/talks/Wien.pdf Beta Integrals]  | ||
* Forrester, Peter, and S. Warnaar. “The Importance of the Selberg Integral.” Bulletin of the American Mathematical Society 45, no. 4 (2008): 489–534. doi:[http://www.ams.org/journals/bull/2008-45-04/S0273-0979-08-01221-4/home.html 10.1090/S0273-0979-08-01221-4].  | * Forrester, Peter, and S. Warnaar. “The Importance of the Selberg Integral.” Bulletin of the American Mathematical Society 45, no. 4 (2008): 489–534. doi:[http://www.ams.org/journals/bull/2008-45-04/S0273-0979-08-01221-4/home.html 10.1090/S0273-0979-08-01221-4].  | ||
| − | |||
| − | |||
==관련논문==  | ==관련논문==  | ||
2014년 12월 15일 (월) 22:30 판
개요
- 오일러 베타적분(베타함수)의 일반화
 
\[ \begin{align} S_{n} (\alpha, \beta, \gamma) & = \int_0^1 \cdots \int_0^1 \prod_{i=1}^n t_i^{\alpha-1}(1-t_i)^{\beta-1} \prod_{1 \le i < j \le n} |t_i - t_j |^{2 \gamma}\,dt_1 \cdots dt_n \\ & = \prod_{j = 0}^{n-1} \frac {\Gamma(\alpha + j \gamma) \Gamma(\beta + j \gamma) \Gamma (1 + (j+1)\gamma)} {\Gamma(\alpha + \beta + (n+j-1)\gamma) \Gamma(1+\gamma)} \end{align},\] 여기서 $$ \Re(\alpha)>0, \Re(\beta)>0, \Re(\gamma)>\max\{-\frac{1}{n},-\frac{\Re{\alpha}}{n-1},-\frac{\Re{\beta}}{n-1}\} $$
- n=1 인 경우
 
\[S_{1} (\alpha, \beta,\gamma)=B(\alpha,\beta) = \int_0^1t^{\alpha-1}(1-t)^{\beta-1}\,dt\]
 
 
 
역사
메모
- Algebra (Coxeter groups, double affine Hecke algebras)
 - Conformal field theory (KZ equations)
 - Gauge theory (supersymmetry, AGT conjecture)
 - Geometry (hyperplane arrangements)
 - Number theory (moments $\zeta(s)$
 - Orthogonal polynomials (Generalised Jacobi polynomials)
 - Random matrices
 - Statistics
 - Statistical physics
 
관련된 항목들
사전 형태의 자료
리뷰, 에세이, 강의노트
- Warnaar, The Selberg Integral, 2011
 - Warnaar, The Mukhin{Varchenko conjecture for type A, 2008
 - Warnaar, Beta Integrals
 - Forrester, Peter, and S. Warnaar. “The Importance of the Selberg Integral.” Bulletin of the American Mathematical Society 45, no. 4 (2008): 489–534. doi:10.1090/S0273-0979-08-01221-4.
 
관련논문
- Patterson, Samuel J. “Selberg Sums - a New Perspective.” arXiv:1411.7600 [math], November 27, 2014. http://arxiv.org/abs/1411.7600.
 - Rains, Eric M. “Multivariate Quadratic Transformations and the Interpolation Kernel.” arXiv:1408.0305 [math], August 1, 2014. http://arxiv.org/abs/1408.0305.
 - Mironov, S., A. Morozov, and Y. Zenkevich. ‘Generalized Jack Polynomials and the AGT Relations for the SU(3) Group’. JETP Letters 99, no. 2 (1 March 2014): 109–13. doi:10.1134/S0021364014020076.
 - Zhang, Hong, and Yutaka Matsuo. ‘Selberg Integral and SU(N) AGT Conjecture’. Journal of High Energy Physics 2011, no. 12 (December 2011). doi:10.1007/JHEP12(2011)106.
 - Mironov, A., Al Morozov, and And Morozov. ‘Matrix Model Version of AGT Conjecture and Generalized Selberg Integrals’. Nuclear Physics B 843, no. 2 (February 2011): 534–57. doi:10.1016/j.nuclphysb.2010.10.016.
 - Warnaar, S. Ole. “The $\mathfrak{sl}_3$ Selberg Integral.” Advances in Mathematics 224, no. 2 (2010): 499–524. doi:10.1016/j.aim.2009.11.011.
 - Warnaar, S. Ole. “A Selberg Integral for the Lie Algebra $A_n$.” Acta Mathematica 203, no. 2 (2009): 269–304. doi:10.1007/s11511-009-0043-x.
 - Luque, Jean-Gabriel, and Jean-Yves Thibon. “Hankel Hyperdeterminants and Selberg Integrals.” Journal of Physics A: Mathematical and General 36, no. 19 (May 16, 2003): 5267. doi:10.1088/0305-4470/36/19/306.
 - Tarasov, V., and A. Varchenko. ‘Selberg-Type Integrals Associated with SL3’. Letters in Mathematical Physics 65, no. 3 (1 September 2003): 173–85. doi:10.1023/B:MATH.0000010712.67685.9d.
 - Selberg, Atle. “Remarks on a Multiple Integral.” Norsk Mat. Tidsskr. 26 (1944): 71–78.