"오일러 연분수"의 두 판 사이의 차이
Pythagoras0 (토론 | 기여) (→개요) |
Pythagoras0 (토론 | 기여) (→예) |
||
11번째 줄: | 11번째 줄: | ||
\hline | \hline | ||
0 & a_0 & a_0 \\ | 0 & a_0 & a_0 \\ | ||
+ | \hline | ||
1 & a_0+a_1 & a_0+a_1 \\ | 1 & a_0+a_1 & a_0+a_1 \\ | ||
+ | \hline | ||
2 & a_0+\frac{a_1}{1-\frac{a_2}{1+a_2}} & a_0+a_1+a_1 a_2 \\ | 2 & a_0+\frac{a_1}{1-\frac{a_2}{1+a_2}} & a_0+a_1+a_1 a_2 \\ | ||
+ | \hline | ||
3 & a_0+\frac{a_1}{1-\frac{a_2}{1+a_2-\frac{a_3}{1+a_3}}} & a_0+a_1+a_1 a_2+a_1 a_2 a_3 \\ | 3 & a_0+\frac{a_1}{1-\frac{a_2}{1+a_2-\frac{a_3}{1+a_3}}} & a_0+a_1+a_1 a_2+a_1 a_2 a_3 \\ | ||
+ | \hline | ||
4 & a_0+\frac{a_1}{1-\frac{a_2}{1+a_2-\frac{a_3}{1+a_3-\frac{a_4}{1+a_4}}}} & a_0+a_1+a_1 a_2+a_1 a_2 a_3+a_1 a_2 a_3 a_4 \\ | 4 & a_0+\frac{a_1}{1-\frac{a_2}{1+a_2-\frac{a_3}{1+a_3-\frac{a_4}{1+a_4}}}} & a_0+a_1+a_1 a_2+a_1 a_2 a_3+a_1 a_2 a_3 a_4 \\ | ||
− | 5 & a_0+\frac{a_1}{1-\frac{a_2}{1+a_2-\frac{a_3}{1+a_3-\frac{a_4}{1+a_4-\frac{a_5}{1+a_5}}}}} & a_0+a_1+a_1 a_2+a_1 a_2 a_3+a_1 a_2 a_3 a_4+a_1 a_2 a_3 a_4 a_5 \\ | + | \hline |
+ | 5 & a_0+\frac{a_1}{1-\frac{a_2}{1+a_2-\frac{a_3}{1+a_3-\frac{a_4}{1+a_4-\frac{a_5}{1+a_5}}}}} & a_0+a_1+a_1 a_2+a_1 a_2 a_3+a_1 a_2 a_3 | ||
+ | a_4+a_1 a_2 a_3 a_4 a_5 \\ | ||
+ | \hline | ||
6 & a_0+\frac{a_1}{1-\frac{a_2}{1+a_2-\frac{a_3}{1+a_3-\frac{a_4}{1+a_4-\frac{a_5}{1+a_5-\frac{a_6}{1+a_6}}}}}} & a_0+a_1+a_1 a_2+a_1 a_2 a_3+a_1 a_2 a_3 a_4+a_1 a_2 a_3 a_4 a_5+a_1 a_2 a_3 a_4 a_5 a_6 | 6 & a_0+\frac{a_1}{1-\frac{a_2}{1+a_2-\frac{a_3}{1+a_3-\frac{a_4}{1+a_4-\frac{a_5}{1+a_5-\frac{a_6}{1+a_6}}}}}} & a_0+a_1+a_1 a_2+a_1 a_2 a_3+a_1 a_2 a_3 a_4+a_1 a_2 a_3 a_4 a_5+a_1 a_2 a_3 a_4 a_5 a_6 | ||
\end{array} | \end{array} |
2015년 1월 28일 (수) 05:53 판
개요
- 다음과 같은 형태의 등식이 성립한다
$$ a_0+\frac{a_1}{1-\frac{a_2}{1+a_2-\frac{a_3}{1+a_3-\frac{a_4}{1+a_4-\frac{a_5}{1+a_5-\frac{a_6}{1+a_6}}}}}}=a_0+a_1+a_1 a_2+a_1 a_2 a_3+a_1 a_2 a_3 a_4+a_1 a_2 a_3 a_4 a_5+a_1 a_2 a_3 a_4 a_5 a_6 $$
예
$$ \begin{array}{c|c|c} n & {} & {} \\ \hline 0 & a_0 & a_0 \\ \hline 1 & a_0+a_1 & a_0+a_1 \\ \hline 2 & a_0+\frac{a_1}{1-\frac{a_2}{1+a_2}} & a_0+a_1+a_1 a_2 \\ \hline 3 & a_0+\frac{a_1}{1-\frac{a_2}{1+a_2-\frac{a_3}{1+a_3}}} & a_0+a_1+a_1 a_2+a_1 a_2 a_3 \\ \hline 4 & a_0+\frac{a_1}{1-\frac{a_2}{1+a_2-\frac{a_3}{1+a_3-\frac{a_4}{1+a_4}}}} & a_0+a_1+a_1 a_2+a_1 a_2 a_3+a_1 a_2 a_3 a_4 \\ \hline 5 & a_0+\frac{a_1}{1-\frac{a_2}{1+a_2-\frac{a_3}{1+a_3-\frac{a_4}{1+a_4-\frac{a_5}{1+a_5}}}}} & a_0+a_1+a_1 a_2+a_1 a_2 a_3+a_1 a_2 a_3 a_4+a_1 a_2 a_3 a_4 a_5 \\ \hline 6 & a_0+\frac{a_1}{1-\frac{a_2}{1+a_2-\frac{a_3}{1+a_3-\frac{a_4}{1+a_4-\frac{a_5}{1+a_5-\frac{a_6}{1+a_6}}}}}} & a_0+a_1+a_1 a_2+a_1 a_2 a_3+a_1 a_2 a_3 a_4+a_1 a_2 a_3 a_4 a_5+a_1 a_2 a_3 a_4 a_5 a_6 \end{array} $$