"더블감마함수와 반스(Barnes) G-함수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
 
==개요==
 
==개요==
  
*  더블 감마함수의 역수로 정의되는 함수<br>
+
*  더블 감마함수의 역수로 정의되는 함수
*  성질:<math>G(1)=1</math>:<math>G(s+1) =\Gamma(s)G(s)</math><br>
+
*  성질:<math>G(1)=1</math>:<math>G(s+1) =\Gamma(s)G(s)</math>
*  자연수 n에 대하여 다음이 성립한다:<math>G(n)=(n-1)!\times (n-2)! \times\cdots 2!\times 1!</math><br>
+
*  자연수 n에 대하여 다음이 성립한다:<math>G(n)=(n-1)!\times (n-2)! \times\cdots 2!\times 1!</math>
  
 
 
 
 
15번째 줄: 15번째 줄:
 
여기서 A는 [[Glaisher–Kinkelin 상수]] <math>A= e^{\frac{1}{12}-\zeta^\prime(-1)}= 1.28242712\dots</math>
 
여기서 A는 [[Glaisher–Kinkelin 상수]] <math>A= e^{\frac{1}{12}-\zeta^\prime(-1)}= 1.28242712\dots</math>
  
* [[스털링 공식]]<br>
+
* [[스털링 공식]]
  
 
 
 
 
23번째 줄: 23번째 줄:
 
==special values==
 
==special values==
  
*  A는 [[Glaisher–Kinkelin 상수]]:<math>G(\frac{1}{2})=2^{\frac{1}{24}}\cdot \pi^{-\frac{1}{4}}\cdot e^{\frac{1}{8}}\cdot A^{-\frac{3}{2}}</math>:<math>G(\frac{3}{4})=2^{-\frac{1}{8}}\cdot \pi^{-\frac{1}{4}}\cdot e^{\frac{1}{8}}\cdot A^{-\frac{3}{2}}</math> 또는 <math>G(\frac{3}{4})=2^{-\frac{1}{8}}\cdot \pi^{-\frac{1}{4}}\cdot e^{\frac{3}{32}+\frac{G}{4\pi}}\cdot A^{-\frac{9}{8}}\cdot \Gamma(\frac{1}{4})^{\frac{1}{4}}</math><br>
+
*  A는 [[Glaisher–Kinkelin 상수]]:<math>G(\frac{1}{2})=2^{\frac{1}{24}}\cdot \pi^{-\frac{1}{4}}\cdot e^{\frac{1}{8}}\cdot A^{-\frac{3}{2}}</math>:<math>G(\frac{3}{4})=2^{-\frac{1}{8}}\cdot \pi^{-\frac{1}{4}}\cdot e^{\frac{1}{8}}\cdot A^{-\frac{3}{2}}</math> 또는 <math>G(\frac{3}{4})=2^{-\frac{1}{8}}\cdot \pi^{-\frac{1}{4}}\cdot e^{\frac{3}{32}+\frac{G}{4\pi}}\cdot A^{-\frac{9}{8}}\cdot \Gamma(\frac{1}{4})^{\frac{1}{4}}</math>
  
 
 
 
 
54번째 줄: 54번째 줄:
 
==관련된 항목들==
 
==관련된 항목들==
  
* [[감마함수]]<br>
+
* [[감마함수]]
* [[멀티 감마함수(multiple gamma function)]]<br>
+
* [[멀티 감마함수(multiple gamma function)]]
* [[로그 사인 적분 (log sine integrals)]]<br>
+
* [[로그 사인 적분 (log sine integrals)]]
  
 
 
 
 
71번째 줄: 71번째 줄:
 
* http://en.wikipedia.org/wiki/Barnes_G-function
 
* http://en.wikipedia.org/wiki/Barnes_G-function
 
* http://www.wolframalpha.com/input/?i=Barnes+G-function
 
* http://www.wolframalpha.com/input/?i=Barnes+G-function
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]<br>
+
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
** [http://dlmf.nist.gov/5.17 § 5.17. Barnes’ -Function (Double Gamma Function)]
 
** [http://dlmf.nist.gov/5.17 § 5.17. Barnes’ -Function (Double Gamma Function)]
  
78번째 줄: 78번째 줄:
 
==관련논문==
 
==관련논문==
  
* [http://www.cs.cmu.edu/~adamchik/articles/Srivastava/ch_sr.pdf Multiple Gamma and Related Functions]<br>
+
* [http://www.cs.cmu.edu/~adamchik/articles/Srivastava/ch_sr.pdf Multiple Gamma and Related Functions]
 
** J. Choi, H. M. Srivastava, V.S. Adamchik , Applied Mathematics and Computation, 134 (2003), 515-533
 
** J. Choi, H. M. Srivastava, V.S. Adamchik , Applied Mathematics and Computation, 134 (2003), 515-533
* [http://projecteuclid.org/euclid.tjm/1270472992 A Proof of the Classical Kronecker Limit Formula]<br>
+
* [http://projecteuclid.org/euclid.tjm/1270472992 A Proof of the Classical Kronecker Limit Formula]
**  Takuro SHINTANI. Source: Tokyo J. of Math. Volume 03, Number 2 (1980), 191-199<br>
+
**  Takuro SHINTANI. Source: Tokyo J. of Math. Volume 03, Number 2 (1980), 191-199
 
* Barnes, E. W. 2013. “The Genesis of the Double Gamma Functions.” Proceedings of the London Mathematical Society S1-31 (1): 358. doi:10.1112/plms/s1-31.1.358.
 
* Barnes, E. W. 2013. “The Genesis of the Double Gamma Functions.” Proceedings of the London Mathematical Society S1-31 (1): 358. doi:10.1112/plms/s1-31.1.358.
 
[[분류:특수함수]]
 
[[분류:특수함수]]

2020년 11월 12일 (목) 06:52 판

개요

  • 더블 감마함수의 역수로 정의되는 함수
  • 성질\[G(1)=1\]\[G(s+1) =\Gamma(s)G(s)\]
  • 자연수 n에 대하여 다음이 성립한다\[G(n)=(n-1)!\times (n-2)! \times\cdots 2!\times 1!\]

 

 

점근급수

\[\log G(z+1)=\frac{1}{12}~-~\log A~+~\frac{z}{2}\log 2\pi~+~\left(\frac{z^2}{2} -\frac{1}{12}\right)\log z~-~\frac{3z^2}{4}~+~ \sum_{k=1}^{N}\frac{B_{2k + 2}}{4k\left(k + 1\right)z^{2k}}~+~O\left(\frac{1}{z^{2N + 2}}\right)\]

여기서 A는 Glaisher–Kinkelin 상수 \(A= e^{\frac{1}{12}-\zeta^\prime(-1)}= 1.28242712\dots\)

 

 

special values

  • A는 Glaisher–Kinkelin 상수\[G(\frac{1}{2})=2^{\frac{1}{24}}\cdot \pi^{-\frac{1}{4}}\cdot e^{\frac{1}{8}}\cdot A^{-\frac{3}{2}}\]\[G(\frac{3}{4})=2^{-\frac{1}{8}}\cdot \pi^{-\frac{1}{4}}\cdot e^{\frac{1}{8}}\cdot A^{-\frac{3}{2}}\] 또는 \(G(\frac{3}{4})=2^{-\frac{1}{8}}\cdot \pi^{-\frac{1}{4}}\cdot e^{\frac{3}{32}+\frac{G}{4\pi}}\cdot A^{-\frac{9}{8}}\cdot \Gamma(\frac{1}{4})^{\frac{1}{4}}\)

 

 

로그 삼각함수 적분과의 관계

\[\int_{0}^{t}\pi u \cot \pi u\,du=t\log {2\pi}+\log \frac{G(1-t)}{G(1+t)}\] \[\int_{0}^{t}\log(\sin \pi u)\,du=t\log(\frac{\sin \pi t}{2\pi})+\log \frac{G(1+t)}{G(1-t)}\]

 

   

 

역사

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

사전 형태의 자료

 

관련논문

  • Multiple Gamma and Related Functions
    • J. Choi, H. M. Srivastava, V.S. Adamchik , Applied Mathematics and Computation, 134 (2003), 515-533
  • A Proof of the Classical Kronecker Limit Formula
    • Takuro SHINTANI. Source: Tokyo J. of Math. Volume 03, Number 2 (1980), 191-199
  • Barnes, E. W. 2013. “The Genesis of the Double Gamma Functions.” Proceedings of the London Mathematical Society S1-31 (1): 358. doi:10.1112/plms/s1-31.1.358.