"코스트카 수 (Kostka number)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
7번째 줄: 7번째 줄:
  
 
==예==
 
==예==
* $n=3$라 두고, $\lambda$가 4의 분할로 주어지는 경우, [[슈르 다항식(Schur polynomial)]]은 다음과 같은 표로 주어진다
+
* $n=3$라 두고, $\lambda$가 4의 분할로 주어지는 경우, 슈르 다항식 $s_{\lambda}$와 단항 대칭 다항식 $m_{\lambda}$는 다음과 같은 표로 주어진다
\begin{array}{c|c}
+
\begin{array}{c|c|c}
\lambda & s_{\lambda } \\
+
\lambda & s_{\lambda } & m_{\lambda } \\
 
\hline
 
\hline
  \{4\} & x_1^4+x_1^3 x_2+x_1^2 x_2^2+x_1 x_2^3+x_2^4+x_1^3 x_3+x_1^2 x_2 x_3+x_1 x_2^2 x_3+x_2^3 x_3+x_1^2 x_3^2+x_1 x_2 x_3^2+x_2^2 x_3^2+x_1 x_3^3+x_2 x_3^3+x_3^4 \\
+
  \{4\} & x_1^4+x_2 x_1^3+x_3 x_1^3+x_2^2 x_1^2+x_3^2 x_1^2+x_2 x_3 x_1^2+x_2^3 x_1+x_3^3 x_1+x_2 x_3^2 x_1+x_2^2 x_3 x_1+x_2^4+x_3^4+x_2 x_3^3+x_2^2 x_3^2+x_2^3 x_3 & x_1^4+x_2^4+x_3^4 \\
  \{3,1\} & x_1^3 x_2+x_1^2 x_2^2+x_1 x_2^3+x_1^3 x_3+2 x_1^2 x_2 x_3+2 x_1 x_2^2 x_3+x_2^3 x_3+x_1^2 x_3^2+2 x_1 x_2 x_3^2+x_2^2 x_3^2+x_1 x_3^3+x_2 x_3^3 \\
+
  \{3,1\} & x_2 x_1^3+x_3 x_1^3+x_2^2 x_1^2+x_3^2 x_1^2+2 x_2 x_3 x_1^2+x_2^3 x_1+x_3^3 x_1+2 x_2 x_3^2 x_1+2 x_2^2 x_3 x_1+x_2 x_3^3+x_2^2 x_3^2+x_2^3 x_3 & x_2 x_1^3+x_3 x_1^3+x_2^3 x_1+x_3^3 x_1+x_2 x_3^3+x_2^3 x_3 \\
  \{2,2\} & x_1^2 x_2^2+x_1^2 x_2 x_3+x_1 x_2^2 x_3+x_1^2 x_3^2+x_1 x_2 x_3^2+x_2^2 x_3^2 \\
+
  \{2,2\} & x_2^2 x_1^2+x_3^2 x_1^2+x_2 x_3 x_1^2+x_2 x_3^2 x_1+x_2^2 x_3 x_1+x_2^2 x_3^2 & x_1^2 x_2^2+x_3^2 x_2^2+x_1^2 x_3^2 \\
  \{2,1,1\} & x_1^2 x_2 x_3+x_1 x_2^2 x_3+x_1 x_2 x_3^2 \\
+
  \{2,1,1\} & x_2 x_3 x_1^2+x_2 x_3^2 x_1+x_2^2 x_3 x_1 & x_2 x_3 x_1^2+x_2 x_3^2 x_1+x_2^2 x_3 x_1 \\
  \{1,1,1,1\} & 0
+
  \{1,1,1,1\} & 0 & 0 \\
 
\end{array}
 
\end{array}
 
* $\lambda=(3,1)$이면,  
 
* $\lambda=(3,1)$이면,  
25번째 줄: 25번째 줄:
 
\end{align}
 
\end{align}
 
$$
 
$$
 
  
 
==테이블==
 
==테이블==

2015년 3월 30일 (월) 21:23 판

개요

\[s_\lambda(\bar{x})= \sum_\mu K_{\lambda\mu}m_\mu(\bar{x}).\ \]

  • 군 \(\mathrm{GL}_n(\mathbb{C})\)의 기약표현 $V_{\lambda}$에서 $\mu$에 대응되는 weight space의 차원


  • $n=3$라 두고, $\lambda$가 4의 분할로 주어지는 경우, 슈르 다항식 $s_{\lambda}$와 단항 대칭 다항식 $m_{\lambda}$는 다음과 같은 표로 주어진다

\begin{array}{c|c|c} \lambda & s_{\lambda } & m_{\lambda } \\ \hline \{4\} & x_1^4+x_2 x_1^3+x_3 x_1^3+x_2^2 x_1^2+x_3^2 x_1^2+x_2 x_3 x_1^2+x_2^3 x_1+x_3^3 x_1+x_2 x_3^2 x_1+x_2^2 x_3 x_1+x_2^4+x_3^4+x_2 x_3^3+x_2^2 x_3^2+x_2^3 x_3 & x_1^4+x_2^4+x_3^4 \\ \{3,1\} & x_2 x_1^3+x_3 x_1^3+x_2^2 x_1^2+x_3^2 x_1^2+2 x_2 x_3 x_1^2+x_2^3 x_1+x_3^3 x_1+2 x_2 x_3^2 x_1+2 x_2^2 x_3 x_1+x_2 x_3^3+x_2^2 x_3^2+x_2^3 x_3 & x_2 x_1^3+x_3 x_1^3+x_2^3 x_1+x_3^3 x_1+x_2 x_3^3+x_2^3 x_3 \\ \{2,2\} & x_2^2 x_1^2+x_3^2 x_1^2+x_2 x_3 x_1^2+x_2 x_3^2 x_1+x_2^2 x_3 x_1+x_2^2 x_3^2 & x_1^2 x_2^2+x_3^2 x_2^2+x_1^2 x_3^2 \\ \{2,1,1\} & x_2 x_3 x_1^2+x_2 x_3^2 x_1+x_2^2 x_3 x_1 & x_2 x_3 x_1^2+x_2 x_3^2 x_1+x_2^2 x_3 x_1 \\ \{1,1,1,1\} & 0 & 0 \\ \end{array}

  • $\lambda=(3,1)$이면,

$$ \begin{align} s_{\lambda}(x_1,x_2,x_3) & =x_1^3 x_2+x_1^2 x_2^2+x_1 x_2^3+x_1^3 x_3+2 x_1^2 x_2 x_3+2 x_1 x_2^2 x_3+x_2^3 x_3+x_1^2 x_3^2+2 x_1 x_2 x_3^2+x_2^2 x_3^2+x_1 x_3^3+x_2 x_3^3 \\ & = (x_1^3 x_2+x_1 x_2^3+x_1^3 x_3+x_2^3 x_3+x_1 x_3^3+x_2 x_3^3)+(x_1^2 x_2^2+x_1^2 x_3^2+x_2^2 x_3^2)+2(x_1^2 x_2 x_3+x_1 x_2^2 x_3+x_1 x_2 x_3^2)\\ & = m_{(3,1,0)}(x_1,x_2,x_3)+m_{(2,2,0)}(x_1,x_2,x_3)+2m_{(2,1,1)}(x_1,x_2,x_3) \end{align} $$

테이블

$n=1$

\begin{array}{c|c} \text{} & \{1\} \\ \hline \{1\} & 1 \\ \end{array}


$n=2$

\begin{array}{c|cc} \text{} & \{2\} & \{1,1\} \\ \hline \{2\} & 1 & 1 \\ \{1,1\} & 0 & 1 \\ \end{array}


$n=3$

\begin{array}{c|ccc} \text{} & \{3\} & \{2,1\} & \{1,1,1\} \\ \hline \{3\} & 1 & 1 & 1 \\ \{2,1\} & 0 & 1 & 2 \\ \{1,1,1\} & 0 & 0 & 1 \\ \end{array}


$n=4$

\begin{array}{c|cccc} \text{} & \{4\} & \{3,1\} & \{2,2\} & \{2,1,1\} & \{1,1,1,1\} \\ \hline \{4\} & 1 & 1 & 1 & 1 & 1 \\ \{3,1\} & 0 & 1 & 1 & 2 & 3 \\ \{2,2\} & 0 & 0 & 1 & 1 & 2 \\ \{2,1,1\} & 0 & 0 & 0 & 1 & 3 \\ \{1,1,1,1\} & 0 & 0 & 0 & 0 & 1 \\ \end{array}


$n=5$

\begin{array}{c|ccccccc} \text{} & \{5\} & \{4,1\} & \{3,2\} & \{3,1,1\} & \{2,2,1\} & \{2,1,1,1\} & \{1,1,1,1,1\} \\ \hline \{5\} & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \{4,1\} & 0 & 1 & 1 & 2 & 2 & 3 & 4 \\ \{3,2\} & 0 & 0 & 1 & 1 & 2 & 3 & 5 \\ \{3,1,1\} & 0 & 0 & 0 & 1 & 1 & 3 & 6 \\ \{2,2,1\} & 0 & 0 & 0 & 0 & 1 & 2 & 5 \\ \{2,1,1,1\} & 0 & 0 & 0 & 0 & 0 & 1 & 4 \\ \{1,1,1,1,1\} & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \end{array}


메모


관련된 항목들


매스매티카 파일 및 계산 리소스


관련논문

  • Kirillov, Anatol N., Anne Schilling, and Mark Shimozono. 1999. “Various Representations of the Generalized Kostka Polynomials.” Séminaire Lotharingien de Combinatoire 42: Art. B42j, 19 pp. (electronic). http://www.emis.de/journals/SLC/wpapers/s42schil.pdf