"나스랄라-라만 적분"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(새 문서: ==개요== * 애스키-윌슨 적분의 확장 * 나스랄라-라만 적분 (Nassrallah-Rahman trigonometric beta integral) \begin{equation}\label{NR} \frac{(q,q)_\infty}{2} \int_{\ma...)
 
26번째 줄: 26번째 줄:
 
* Nassrallah, B., and M. Rahman. “Projection Formulas, a Reproducing Kernel and a Generating Function for Q-Wilson Polynomials.” SIAM Journal on Mathematical Analysis 16, no. 1 (January 1, 1985): 186–97. doi:10.1137/0516014.
 
* Nassrallah, B., and M. Rahman. “Projection Formulas, a Reproducing Kernel and a Generating Function for Q-Wilson Polynomials.” SIAM Journal on Mathematical Analysis 16, no. 1 (January 1, 1985): 186–97. doi:10.1137/0516014.
 
* Askey, Richard, and James Arthur Wilson. Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials. Vol. 319. American Mathematical Soc., 1985.
 
* Askey, Richard, and James Arthur Wilson. Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials. Vol. 319. American Mathematical Soc., 1985.
 +
 +
 +
[[분류:적분]]
 +
[[분류:특수함수]]

2015년 8월 10일 (월) 20:12 판

개요

  • 애스키-윌슨 적분의 확장
  • 나스랄라-라만 적분 (Nassrallah-Rahman trigonometric beta integral)

\begin{equation}\label{NR} \frac{(q,q)_\infty}{2} \int_{\mathbb{T}}\frac{(z \prod_{i=1}^5 t_i,q)_\infty (z^{-1} \prod_{i=1}^5 t_i,q)_\infty (z^2,q)_\infty (z^{-2},q)_\infty}{\prod_{i=1}^5 (t_i z)_\infty (t_i z^{-1})_\infty} \frac{dz}{2\pi i z} \ = \ \frac{\prod_{j=1}^5 (\frac{t_1 t_2 t_3 t_4 t_5}{t_j},q)_\infty}{\prod_{1 \leq i < j \leq 5} (t_i t_j,q)_\infty} \end{equation}


확장

정리 (Spiridonov).

Let $t_1, \dots ,t_6,p,q \in {\mathbb{C}}$ with $|t_1|, \dots , |t_6|,|p|,|q| <1$. Then \begin{equation} \label{betaint} \frac{(p;p)_\infty (q;q)_\infty}{2} \int_{\mathbb{T}} \frac{\prod_{i=1}^6 \Gamma(t_i z ;p,q)\Gamma(t_i z^{-1} ;p,q)}{\Gamma(z^{2};p,q) \Gamma(z^{-2};p,q)} \frac{dz}{2 \pi i z} = \prod_{1 \leq i < j \leq 6} \Gamma(t_i t_j;p,q), \end{equation} where the unit circle $\mathbb{T}$ is taken in the positive orientation and we imposed the balancing condition $\prod_{i=1}^6 t_i=pq$.

  • $p \rightarrow 0$일 때, \ref{NR}을 얻는다


메모

  • observed by Rahman in \cite{Rahman2} as a special case of the integral found in \cite{Nasrallah}



관련논문

  • Nassrallah, B., and M. Rahman. “Projection Formulas, a Reproducing Kernel and a Generating Function for Q-Wilson Polynomials.” SIAM Journal on Mathematical Analysis 16, no. 1 (January 1, 1985): 186–97. doi:10.1137/0516014.
  • Askey, Richard, and James Arthur Wilson. Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials. Vol. 319. American Mathematical Soc., 1985.