"초타원 시그마 함수(hyperelliptic sigma functions)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) (→관련논문) |
Pythagoras0 (토론 | 기여) |
||
24번째 줄: | 24번째 줄: | ||
==관련논문== | ==관련논문== | ||
* Bernatska, Julia, and Dmitry Leykin. “On Degenerate Sigma-Functions of Genus Two.” arXiv:1509.01490 [math-Ph], September 4, 2015. http://arxiv.org/abs/1509.01490. | * Bernatska, Julia, and Dmitry Leykin. “On Degenerate Sigma-Functions of Genus Two.” arXiv:1509.01490 [math-Ph], September 4, 2015. http://arxiv.org/abs/1509.01490. | ||
− | * Kodama, Yuji, Shigeki Matsutani, and Emma Previato. 2010. “Quasi-periodic and periodic solutions of the Toda lattice via the hyperelliptic sigma function.” <em>1008.0509</em> (August 3). http://arxiv.org/abs/1008.0509 . | + | * Kodama, Yuji, Shigeki Matsutani, and Emma Previato. 2010. “Quasi-periodic and periodic solutions of the Toda lattice via the hyperelliptic sigma function.” <em>1008.0509</em> (August 3). http://arxiv.org/abs/1008.0509 . |
* Eilbeck, J C, V Z Enolski, and J Gibbons. 2010. Sigma, tau and Abelian functions of algebraic curves. Journal of Physics A: Mathematical and Theoretical 43, no. 45 (11): 455216. doi:[http://dx.doi.org/10.1088/1751-8113/43/45/455216 10.1088/1751-8113/43/45/455216]. | * Eilbeck, J C, V Z Enolski, and J Gibbons. 2010. Sigma, tau and Abelian functions of algebraic curves. Journal of Physics A: Mathematical and Theoretical 43, no. 45 (11): 455216. doi:[http://dx.doi.org/10.1088/1751-8113/43/45/455216 10.1088/1751-8113/43/45/455216]. | ||
* Eilbeck, J. C., V. Z. Enolski, S. Matsutani, Y. Ônishi, and E. Previato. “Abelian Functions for Trigonal Curves of Genus Three.” International Mathematics Research Notices, July 8, 2010. doi:10.1093/imrn/rnm140. http://arxiv.org/abs/math/0610019 | * Eilbeck, J. C., V. Z. Enolski, S. Matsutani, Y. Ônishi, and E. Previato. “Abelian Functions for Trigonal Curves of Genus Three.” International Mathematics Research Notices, July 8, 2010. doi:10.1093/imrn/rnm140. http://arxiv.org/abs/math/0610019 |
2020년 11월 16일 (월) 06:43 판
메모
관련된 항목들
리뷰논문과 에세이
- England, The Weierstrass Theory For Elliptic Functions Including The Generalisation To Higher Genus
- Buchstaber, Victor, Victor Enolskii, and Dmitri Leykin. “Hyperelliptic Kleinian Functions and Applications.” arXiv:solv-int/9603005, March 16, 1996. http://arxiv.org/abs/solv-int/9603005.
관련논문
- Bernatska, Julia, and Dmitry Leykin. “On Degenerate Sigma-Functions of Genus Two.” arXiv:1509.01490 [math-Ph], September 4, 2015. http://arxiv.org/abs/1509.01490.
- Kodama, Yuji, Shigeki Matsutani, and Emma Previato. 2010. “Quasi-periodic and periodic solutions of the Toda lattice via the hyperelliptic sigma function.” 1008.0509 (August 3). http://arxiv.org/abs/1008.0509 .
- Eilbeck, J C, V Z Enolski, and J Gibbons. 2010. Sigma, tau and Abelian functions of algebraic curves. Journal of Physics A: Mathematical and Theoretical 43, no. 45 (11): 455216. doi:10.1088/1751-8113/43/45/455216.
- Eilbeck, J. C., V. Z. Enolski, S. Matsutani, Y. Ônishi, and E. Previato. “Abelian Functions for Trigonal Curves of Genus Three.” International Mathematics Research Notices, July 8, 2010. doi:10.1093/imrn/rnm140. http://arxiv.org/abs/math/0610019
- Braden, Harry W, Victor Z Enolskii, and Andrew N. W Hone. 2005. “Bilinear recurrences and addition formulae for hyperelliptic sigma functions.” math/0501162 (January 11). http://arxiv.org/abs/math/0501162 .
- Matsutani, Shigeki. “Elliptic and Hyperelliptic Solutions of Discrete Painlevé I and Its Extensions to Higher Order Difference Equations.” Physics Letters A 300, no. 2–3 (July 29, 2002): 233–42. doi:16/S0375-9601(02)00784-3
- Ônishi, Yoshihiro. “Determinant Expressions for Hyperelliptic Functions (with an Appendix by Shigeki Matsutani).” arXiv:math/0105189, May 23, 2001. http://arxiv.org/abs/math/0105189.
- Matsutani, Shigeki. 2000. Hyperelliptic Solutions of KdV and KP equations: Reevaluation of Baker's Study on Hyperelliptic Sigma Functions. nlin/0007001 (July 1). doi:doi:10.1088/0305-4470/34/22/312. http://arxiv.org/abs/nlin/0007001.