"베셀 함수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(section '관련논문' updated)
(section '관련논문' updated)
19번째 줄: 19번째 줄:
  
 
==관련논문==
 
==관련논문==
 +
* Zhi Qi, Theory of Bessel Functions of High Rank - II: Hankel Transforms and Fundamental Bessel Kernels, arXiv:1411.6710 [math.NT], November 25 2014, http://arxiv.org/abs/1411.6710
 
* Zhi Qi, Theory of Bessel Functions of High Rank - I: Fundamental Bessel Functions, arXiv:1408.5652 [math.NT], August 25 2014, http://arxiv.org/abs/1408.5652
 
* Zhi Qi, Theory of Bessel Functions of High Rank - I: Fundamental Bessel Functions, arXiv:1408.5652 [math.NT], August 25 2014, http://arxiv.org/abs/1408.5652
 
* Zhi Qi, On the Fourier Transform of Bessel Functions over Complex Numbers - I: the Spherical Case, arXiv:1606.02913 [math.CA], June 09 2016, http://arxiv.org/abs/1606.02913
 
* Zhi Qi, On the Fourier Transform of Bessel Functions over Complex Numbers - I: the Spherical Case, arXiv:1606.02913 [math.CA], June 09 2016, http://arxiv.org/abs/1606.02913
 
* Maier, Robert S. “Integrals of Lipschitz-Hankel Type, Legendre Functions, and Table Errata.” arXiv:1509.08963 [math], September 29, 2015. http://arxiv.org/abs/1509.08963.
 
* Maier, Robert S. “Integrals of Lipschitz-Hankel Type, Legendre Functions, and Table Errata.” arXiv:1509.08963 [math], September 29, 2015. http://arxiv.org/abs/1509.08963.

2016년 6월 9일 (목) 23:29 판

개요

  • 베셀 함수
  • 제1종 변형 베셀 함수
  • 제2종 변형 베셀함수

$$ K_{\nu }(x)= \int_0^{\infty } (\exp (-x (\cosh t))) (\cosh (\nu t)) \, dt $$


메모


관련된 항목들


관련논문

  • Zhi Qi, Theory of Bessel Functions of High Rank - II: Hankel Transforms and Fundamental Bessel Kernels, arXiv:1411.6710 [math.NT], November 25 2014, http://arxiv.org/abs/1411.6710
  • Zhi Qi, Theory of Bessel Functions of High Rank - I: Fundamental Bessel Functions, arXiv:1408.5652 [math.NT], August 25 2014, http://arxiv.org/abs/1408.5652
  • Zhi Qi, On the Fourier Transform of Bessel Functions over Complex Numbers - I: the Spherical Case, arXiv:1606.02913 [math.CA], June 09 2016, http://arxiv.org/abs/1606.02913
  • Maier, Robert S. “Integrals of Lipschitz-Hankel Type, Legendre Functions, and Table Errata.” arXiv:1509.08963 [math], September 29, 2015. http://arxiv.org/abs/1509.08963.