"Cyclotomic numbers and Chebyshev polynomials"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
13번째 줄: 13번째 줄:
 
 
 
 
  
 
+
<h5>diagonals of polygon</h5>
 +
 
 +
Clear[r]<br> r[i_] := Sin[((i + 1) Pi)/7]/Sin[Pi/7]<br> Table[N[r[i], 10], {i, 0, 5}]<br> Table[N[r[i]^2 - (1 + r[i - 1] r[i + 1]), 10], {i, 1, 4}]
  
 
 
 
 
37번째 줄: 39번째 줄:
  
 
<h5>related items</h5>
 
<h5>related items</h5>
 
 
 
  
 
* [[sl(2) - orthogonal polynomials and Lie theory]]
 
* [[sl(2) - orthogonal polynomials and Lie theory]]

2010년 12월 23일 (목) 09:08 판

introduction
  • borrowed from Andrews-Gordon identity
  • quantum dimension and thier recurrence relation
    \(d_i=\frac{\sin \frac{(i+1)\pi}{k+2}}{\sin \frac{\pi}{k+2}}}\) satisfies
    \(d_i^2=1+d_{i-1}d_{i+1}\) where \(d_0=1\), \(d_k=1\)

 

  1. (*choose k for c (2,k+2) minimal model*)k := 11
    d[k_, i_] := Sin[(i + 1) Pi/(k + 2)]/Sin[Pi/(k + 2)]
    Table[{i, d[k, i]}, {i, 1, k}] // TableForm
    Table[{i, N[(d[k, i])^2 - (1 + d[k, i - 1]*d[k, i + 1]), 10]}, {i, 1,
       k}] // TableForm
  2. Plot[d[k, i], {i, 0, 2 k}]

 

 

diagonals of polygon

Clear[r]
r[i_] := Sin[((i + 1) Pi)/7]/Sin[Pi/7]
Table[N[r[i], 10], {i, 0, 5}]
Table[N[r[i]^2 - (1 + r[i - 1] r[i + 1]), 10], {i, 1, 4}]

 

 

chebyshev polynomials

 

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

 

 

articles

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links