"Cyclotomic numbers and Chebyshev polynomials"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
잔글 (찾아 바꾸기 – “* Princeton companion to mathematics(Companion_to_Mathematics.pdf)” 문자열을 “” 문자열로)
50번째 줄: 50번째 줄:
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
* Princeton companion to mathematics([[2910610/attachments/2250873|Companion_to_Mathematics.pdf]])
+
 
  
 
 
 
 

2012년 11월 1일 (목) 12:08 판

introduction

  • borrowed from Andrews-Gordon identity
  • quantum dimension and thier recurrence relation
    \(d_i=\frac{\sin \frac{(i+1)\pi}{k+2}}{\sin \frac{\pi}{k+2}}}\) satisfies
    \(d_i^2=1+d_{i-1}d_{i+1}\) where \(d_0=1\), \(d_k=1\)

 

  1. (*choose k for c (2,k+2) minimal model*)k := 11
    d[k_, i_] := Sin[(i + 1) Pi/(k + 2)]/Sin[Pi/(k + 2)]
    Table[{i, d[k, i]}, {i, 1, k}] // TableForm
    Table[{i, N[(d[k, i])^2 - (1 + d[k, i - 1]*d[k, i + 1]), 10]}, {i, 1,
       k}] // TableForm
  2. Plot[d[k, i], {i, 0, 2 k}]

 

 

diagonals of polygon

Clear[r]
r[i_] := Sin[((i + 1) Pi)/7]/Sin[Pi/7]
Table[N[r[i], 10], {i, 0, 5}]
Table[N[r[i]^2 - (1 + r[i - 1] r[i + 1]), 10], {i, 1, 4}]

 

 

chebyshev polynomials

 

 

history

 

 

related items

 

 

encyclopedia


 

 

books

 

 

 

articles

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links