"Cyclotomic numbers and Chebyshev polynomials"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
4번째 줄: | 4번째 줄: | ||
* quantum dimension and thier recurrence relation | * quantum dimension and thier recurrence relation | ||
:<math>d_i=\frac{\sin \frac{(i+1)\pi}{k+2}}{\sin \frac{\pi}{k+2}}</math> satisfies | :<math>d_i=\frac{\sin \frac{(i+1)\pi}{k+2}}{\sin \frac{\pi}{k+2}}</math> satisfies | ||
− | :<math>d_i^2=1+d_{i-1}d_{i+1}</math> where <math>d_0=1</math>, <math>d_k=1</math | + | :<math>d_i^2=1+d_{i-1}d_{i+1}</math> where <math>d_0=1</math>, <math>d_k=1</math> |
− | + | ==diagonals of regular polygon== | |
− | + | * length of hepagon | |
− | + | $$d_i = \frac{\sin (\pi (i+1)/7)}{\sin (\pi/7)} $$ | |
− | |||
− | |||
− | |||
− | |||
− | ==diagonals of polygon== | ||
− | |||
− | |||
− | |||
− | |||
26번째 줄: | 17번째 줄: | ||
* [http://pythagoras0.springnote.com/pages/4682477 체비셰프 다항식] | * [http://pythagoras0.springnote.com/pages/4682477 체비셰프 다항식] | ||
− | * http://mathworld.wolfram.com/ChebyshevPolynomialoftheSecondKind.html<br> also obey the interesting [http://mathworld.wolfram.com/Determinant.html determinant] identity | + | * http://mathworld.wolfram.com/ChebyshevPolynomialoftheSecondKind.html<br> also obey the interesting [http://mathworld.wolfram.com/Determinant.html determinant] identity |
2017년 11월 19일 (일) 03:58 판
introduction
- borrowed from Andrews-Gordon identity
- quantum dimension and thier recurrence relation
\[d_i=\frac{\sin \frac{(i+1)\pi}{k+2}}{\sin \frac{\pi}{k+2}}\] satisfies \[d_i^2=1+d_{i-1}d_{i+1}\] where \(d_0=1\), \(d_k=1\)
diagonals of regular polygon
- length of hepagon
$$d_i = \frac{\sin (\pi (i+1)/7)}{\sin (\pi/7)} $$
chebyshev polynomials
- 체비셰프 다항식
- http://mathworld.wolfram.com/ChebyshevPolynomialoftheSecondKind.html
also obey the interesting determinant identity
history
articles
- Golden Fields: A Case for the Heptagon
- Peter Steinbach, Mathematics Magazine Vol. 70, No. 1 (Feb., 1997), pp. 22-31