"Symmetry and conserved quantitiy : Noether's theorem"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
1번째 줄: | 1번째 줄: | ||
<h5>introduction</h5> | <h5>introduction</h5> | ||
− | <math>j^{\mu | + | * current <br><math>j(x)=(j^0(x),j^1(x),j^2(x),j^3(x))</math><br><math>j^{\mu}(x)= \frac{\partial \mathcal{L}}{\partial ( \partial_\mu \phi )}\left(\frac{\partial\alpha_{s}(\phi)}{\partial s} \right) </math><br> |
+ | |||
+ | |||
+ | |||
+ | * obeys the continuity equation<br><math>\partial_{\mu} J^{\mu}=\sum_{\mu=0}^{3}\frac{\partial j^{\mu}}{\partial x^{\mu}}=0</math><br> | ||
+ | * <br> <br> | ||
2011년 10월 2일 (일) 05:06 판
introduction
- current
\(j(x)=(j^0(x),j^1(x),j^2(x),j^3(x))\)
\(j^{\mu}(x)= \frac{\partial \mathcal{L}}{\partial ( \partial_\mu \phi )}\left(\frac{\partial\alpha_{s}(\phi)}{\partial s} \right) \)
- obeys the continuity equation
\(\partial_{\mu} J^{\mu}=\sum_{\mu=0}^{3}\frac{\partial j^{\mu}}{\partial x^{\mu}}=0\) -
history
encyclopedia
- http://en.wikipedia.org/wiki/
- http://www.scholarpedia.org/
- http://eom.springer.de
- http://www.proofwiki.org/wiki/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
books
- Emmy Noether’s Wonderful Theorem
- 2011년 books and articles
- http://library.nu/search?q=
- http://library.nu/search?q=
expositions
articles
- http://www.ams.org/mathscinet
- http://www.zentralblatt-math.org/zmath/en/
- http://arxiv.org/
- http://www.pdf-search.org/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://dx.doi.org/
question and answers(Math Overflow)
- http://mathoverflow.net/search?q=
- http://math.stackexchange.com/search?q=
- http://physics.stackexchange.com/search?q=
blogs
- 구글 블로그 검색
- http://ncatlab.org/nlab/show/HomePage
experts on the field