"Electromagnetics"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
17번째 줄: 17번째 줄:
 
<h5>Maxwell's equations</h5>
 
<h5>Maxwell's equations</h5>
  
<math>\nabla \cdot \mathbf{E} = \frac {\rho} {\varepsilon_0}</math>
+
*  using vector calculus notation<br><math>\nabla \cdot \mathbf{E} = \frac {\rho} {\varepsilon_0}</math><br><math>\nabla \cdot \mathbf{B} = 0</math><br><math>\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}} {\partial t}</math><br><math>\nabla \times \mathbf{B} = \mu_0\mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}} {\partial t}\ </math><br>
 
 
<math>\nabla \cdot \mathbf{B} = 0</math>
 
 
 
<math>\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}} {\partial t}</math>
 
 
 
<math>\nabla \times \mathbf{B} = \mu_0\mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}} {\partial t}\ </math>
 
  
 
 
 
 
91번째 줄: 85번째 줄:
 
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">메모</h5>
 
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">메모</h5>
  
 +
* http://www.math.toronto.edu/~colliand/426_03/Papers03/C_Quigley.pdf<br>
 
*  Feynman's proof of Maxwell equations and Yang's unification of electromagnetic and gravitational Aharonov–Bohm effects<br>
 
*  Feynman's proof of Maxwell equations and Yang's unification of electromagnetic and gravitational Aharonov–Bohm effects<br>
  

2010년 1월 26일 (화) 15:34 판

Lorentz force
  • almost all forces in mechanics are conservative forces, those that are functions nly of positions, and certainly not functions of velocities
  • Lorentz force is a rare example of velocity dependent force

 

 

polarization of light
  • has two possibilites
    • what does this mean?

 

Maxwell's equations
  • using vector calculus notation
    \(\nabla \cdot \mathbf{E} = \frac {\rho} {\varepsilon_0}\)
    \(\nabla \cdot \mathbf{B} = 0\)
    \(\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}} {\partial t}\)
    \(\nabla \times \mathbf{B} = \mu_0\mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}} {\partial t}\ \)

 

 

charge density and current density

 

 

potentials
  • vector potential
    from \(\nabla \cdot \mathbf{B} = 0\), we can find a vector potential such that \(\mathbf{B}=\nabla \times \mathbf{A}\)
  • scalar potential
    \(E=-\frac{\partial\mathbf{A}}{\partial t} - \nabla \phi \)

 

four-current
  • charge density and current density

\[J^a = \left(c \rho, \mathbf{j} \right)\]

where

c is the speed of light
ρ the charge density
j the conventional current density.
a labels the space-time dimensions

 

four vector potential
  • this is what we call the electromagnetic field
    \(A_{\alpha} = \left( - \phi/c, \mathbf{A} \right)\)
    φ is the scalar potential and \(A\)  is the vector potential.

 

 

electromagnetic field
  • an example of four-vector
  • gague field describing the photon
  • composed of a scalar electric potential and a three-vector magnetic potential

 


Covariant formulation
  • electromagnetic field strength
    \(F_{\alpha \beta} = \partial_{\alpha} A_{\beta} - \partial_{\beta} A_{\alpha}\)

\(F_{\alpha \beta} = \left( \begin{matrix} 0 & \frac{E_x}{c} & \frac{E_y}{c} & \frac{E_z}{c} \\ \frac{-E_x}{c} & 0 & -B_z & B_y \\ \frac{-E_y}{c} & B_z & 0 & -B_x \\ \frac{-E_z}{c} & -B_y & B_x & 0 \end{matrix} \right)\)

 

 

메모

 

 

참고할만한 자료