"Electromagnetics"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)
1번째 줄: 1번째 줄:
<h5>gauge invariance</h5>
+
==gauge invariance</h5>
  
 
*  the electromagnetic potential is a connection on a U(1)-bundle on spacetime whose curvature is the electromagnetic field<br>
 
*  the electromagnetic potential is a connection on a U(1)-bundle on spacetime whose curvature is the electromagnetic field<br>
8번째 줄: 8번째 줄:
 
 
 
 
  
<h5>Lorentz force</h5>
+
==Lorentz force</h5>
  
 
* almost all forces in mechanics are conservative forces, those that are functions only of positions, and certainly not functions of velocities
 
* almost all forces in mechanics are conservative forces, those that are functions only of positions, and certainly not functions of velocities
17번째 줄: 17번째 줄:
 
 
 
 
  
<h5>polarization of light</h5>
+
==polarization of light</h5>
  
 
*  has two possibilites<br>
 
*  has two possibilites<br>
74번째 줄: 74번째 줄:
 
 
 
 
  
<h5>related items</h5>
+
==related items</h5>
  
 
* [[Gauge theory]]<br>
 
* [[Gauge theory]]<br>

2012년 10월 28일 (일) 13:58 판

==gauge invariance

  • the electromagnetic potential is a connection on a U(1)-bundle on spacetime whose curvature is the electromagnetic field
  • the electromagnetism is a gauge field theory with structure group U(1)

 

 

==Lorentz force

  • almost all forces in mechanics are conservative forces, those that are functions only of positions, and certainly not functions of velocities
  • Lorentz force is a rare example of velocity dependent force

 

 

==polarization of light

  • has two possibilites
    • what does this mean?

 

 

 

Lagrangian formulation
  • Lagrangian for a charged particle in an electromagnetic field
    \(L=T-V\)
    \(L(q,\dot{q})=m||\dot{q}||-e\phi+eA_{i}\dot{q}^{i}\)
  • action
    \(S=-\frac{1}{4}\int F^{\alpha\beta}F_{\alpha\beta}\,d^{4}x\)
  • Euler-Lagrange equations
    \(p_{i}=\frac{\partial{L}}{\partial{\dot{q}^{i}}}=m\frac{\dot{q}_{i}}{||\dot{q}_{i}||}+eA_{i}=mv_{i}+eA_{i}\)
    \(F_{i}=\frac{\partial{L}}{\partial{{q}^{i}}}=\frac{\partial}{\partial{{q}^{i}}}(eA_{j}\dot{q}^{j})=e\frac{\partial{A_{j}}}{\partial{q}^{i}}\dot{q}^{j}}}\)
  • equation of motion
    \(\dot{p}=F\) Therefore we get
    \(m\frac{dv_{i}}{dt}=eF_{ij}\dot{q}^{j}\). This is what we call the Lorentz force law.
  • force on a particle is same as \(e\mathbf{E}+e\mathbf{v}\times \mathbf{B}\)

 

 

Hamiltonian formulation
  • total energy of a charge particle in an electromagnetic field
    \(E=\frac{1}{2m}(p_j-eA_{j})(p_j-eA_j)+q\phi\)
  • replace the momentum with the canonical momentum
    • similar to covariant derivative

 

 

force on a particle
  • force on a particle is same as \(e\mathbf{E}+e\mathbf{v}\times \mathbf{B}\)

 

 

 

 

메모

 

 

==related items

 

 

encyclopedia

 

 

books

ELECTROMAGNETIC THEORY AND COMPUTATION