"Electromagnetics"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
14번째 줄: 14번째 줄:
 
==gauge invariance==
 
==gauge invariance==
  
*  the electromagnetic potential is a connection on a U(1)-bundle on spacetime whose curvature is the electromagnetic field<br>
+
*  the electromagnetic potential is a connection on a U(1)-bundle on spacetime whose curvature is the electromagnetic field
*  the electromagnetism is a gauge field theory with structure group U(1)<br>
+
*  the electromagnetism is a gauge field theory with structure group U(1)
  
 
+
  
 
+
  
 
==Lorentz force==
 
==Lorentz force==
26번째 줄: 26번째 줄:
 
* Lorentz force is a rare example of velocity dependent force
 
* Lorentz force is a rare example of velocity dependent force
  
 
+
  
 
+
  
 
==polarization of light==
 
==polarization of light==
  
*  has two possibilites<br>
+
*  has two possibilites
 
** what does this mean?
 
** what does this mean?
  
 
+
  
 
+
  
 
+
  
 
==Lagrangian formulation==
 
==Lagrangian formulation==
 
* [[Lagrangian formulation of electromagetism]]
 
* [[Lagrangian formulation of electromagetism]]
  
 
+
  
 
==Hamiltonian formulation==
 
==Hamiltonian formulation==
  
*  total energy of a charge particle in an electromagnetic field<br><math>E=\frac{1}{2m}(p_j-eA_{j})(p_j-eA_j)+q\phi</math><br>
+
*  total energy of a charge particle in an electromagnetic field<math>E=\frac{1}{2m}(p_j-eA_{j})(p_j-eA_j)+q\phi</math>
*  replace the momentum with the canonical momentum<br>
+
*  replace the momentum with the canonical momentum
**  similar to covariant derivative<br>
+
**  similar to covariant derivative
  
 
+
  
 
+
  
 
==force on a particle==
 
==force on a particle==
60번째 줄: 60번째 줄:
 
* force on a particle is same as <math>e\mathbf{E}+e\mathbf{v}\times \mathbf{B}</math>
 
* force on a particle is same as <math>e\mathbf{E}+e\mathbf{v}\times \mathbf{B}</math>
  
 
+
  
 
+
  
 
+
  
 
+
  
 
==메모==
 
==메모==
  
* [http://www.math.toronto.edu/%7Ecolliand/426_03/Papers03/C_Quigley.pdf http://www.math.toronto.edu/~colliand/426_03/Papers03/C_Quigley.pdf]<br>
+
* [http://www.math.toronto.edu/%7Ecolliand/426_03/Papers03/C_Quigley.pdf http://www.math.toronto.edu/~colliand/426_03/Papers03/C_Quigley.pdf]
*  Feynman's proof of Maxwell equations and Yang's unification of electromagnetic and gravitational Aharonov–Bohm effects<br>
+
*  Feynman's proof of Maxwell equations and Yang's unification of electromagnetic and gravitational Aharonov–Bohm effects
  
 
+
  
 
+
  
 
==related items==
 
==related items==
  
* [[Gauge theory]]<br>
+
* [[Gauge theory]]
* [[QED]]<br>
+
* [[QED]]
  
 
 
 
 
 
  
 
==encyclopedia==
 
==encyclopedia==
96번째 줄: 93번째 줄:
 
* http://en.wikipedia.org/wiki/Four-current
 
* http://en.wikipedia.org/wiki/Four-current
  
 
+
  
 
+
  
 
==books==
 
==books==
 
* ELECTROMAGNETIC THEORY AND COMPUTATION
 
* ELECTROMAGNETIC THEORY AND COMPUTATION
 +
* [[The Early History of Radio from Faraday to Marconi]]
  
 +
 
[[분류:math and physics]]
 
[[분류:math and physics]]
 
[[분류:gauge theory]]
 
[[분류:gauge theory]]

2013년 9월 22일 (일) 15:31 판

basic history

  • Leyden jar : capacitor
  • Volta vs Galvani
  • Humphrey Davy
  • Oesrsted
  • Faraday
  • Maxwell
  • Lodge
  • Marconi
  • Tesla : alternating current


gauge invariance

  • the electromagnetic potential is a connection on a U(1)-bundle on spacetime whose curvature is the electromagnetic field
  • the electromagnetism is a gauge field theory with structure group U(1)



Lorentz force

  • almost all forces in mechanics are conservative forces, those that are functions only of positions, and certainly not functions of velocities
  • Lorentz force is a rare example of velocity dependent force



polarization of light

  • has two possibilites
    • what does this mean?




Lagrangian formulation


Hamiltonian formulation

  • total energy of a charge particle in an electromagnetic field\(E=\frac{1}{2m}(p_j-eA_{j})(p_j-eA_j)+q\phi\)
  • replace the momentum with the canonical momentum
    • similar to covariant derivative



force on a particle

  • force on a particle is same as \(e\mathbf{E}+e\mathbf{v}\times \mathbf{B}\)





메모



related items


encyclopedia



books